小學生答題卡上的閱讀與理解的簡答題要寫答嗎

小學生答題卡上的閱讀與理解的簡答題要寫答。
一年級簡答題不寫答一般不會扣分,但是嚴格意義上講,不寫答是不可以的。我們學習知識要嚴謹,在做題時,我們除了要字跡工整,更要認真審題,嚴格按照題目所要求的作答。這不僅是成績的問題,而是我們養(yǎng)成一個好習慣的問題。
小學生答題卡答題規(guī)范
1、在答題卡左上方有填寫姓名、班級、座位號、準考證號區(qū)域等信息。使用黑色水筆或鋼筆填寫,在答題卡右上方的準考證號區(qū)域的阿拉伯數(shù)字框中使用2B鉛筆來涂。切記要填涂正確,否則會影響到分數(shù)。
2、選擇題區(qū)域在做題時應使用2B鉛筆填涂,必須將該框填涂完整,否則可能會影響到分數(shù)的獲得。
3、在大題的作答部分,使用的是黑色水筆或鋼筆作答,答題不能超出框內(nèi)范圍,要答于相應的題號下。
4、要保持答題卡的干凈整潔,空白位置中不能做任何標記,否則會作弊論處。要保持答題卡整潔,不要隨意亂折,不要出現(xiàn)褶皺,出現(xiàn)這種狀況,也會影響到答題卡在電腦上掃描,進而影響考試成績。
小學試卷上說一說的題需要筆答么
小學試卷上說一說的題需要筆答。
只要是作業(yè)上的題都要用寫的,因為老師批改的時候沒法聽你錄音啊。說是口頭回答,其實是要用寫的。
試卷是紙張答題,在紙張有考試組織者檢測考試者學習情況而設定在規(guī)定時間內(nèi)完成的試題。也可以是資格考試中用以檢驗考生有關知識能力而進行人才篩選的工具。
低年級寫數(shù)學的時候用寫答嗎
不用的。
一年級的應用題是不用寫“答”的。真正的規(guī)定,是三年級上冊才會寫。不過寫了也沒有錯誤之處,并不能說不規(guī)范。
小學數(shù)學中把含有數(shù)量關系的實際問題用語言或文字敘述出來,這樣所形成的題目叫做應用題。
小學一年級數(shù)學應用題一定要寫答嗎?
哈哈,我正好是教一年級數(shù)學的。一年級數(shù)學是不用寫答的,看看教材就知道了。新課程要求學生會列出算式并幾算就可以了。真正嚴格寫答是到三年級上冊,才會出現(xiàn)寫答和單位,我們歷城區(qū)教研室就這樣規(guī)定的。
三年級語文做題要不要寫答
寫了不多,不寫也沒很大問題,最好寫上
1、給閱卷老師的第一印象很好
字寫得工整的,一般卷面也整潔些。這樣的卷面總給人一種美感。美,誰會拒絕呢?寫字本來就是語文學習的重要內(nèi)容,語文試卷中有許多題目答案是相對靈活的,這時候評卷老師給分一方面要看問題回答的怎么樣,另一方面就要看字寫得怎么樣了。
對于字跡工整的卷子,評卷老師心里常常會這樣想:這一定是個學習認真、態(tài)度端正的好孩子,給分時自然慷慨一些;對于字跡潦草,書寫臟亂的卷子,評卷老師心里會想:看來這個孩子沒有好的學習習慣,扣分時自然也不會心疼。
尤其是作文,更是如此,字跡工整的作文當然更容易得高分。所以兩份答題內(nèi)容相差不多的語文試卷,因為書寫的原因造成最終成績差上5-8分,甚至更多分數(shù)的事,并不是新鮮事。
2、讓我愿意全面去看
是否可以打個這樣的比方?一份不好的試卷,即使你有一些亮點,就如同將金子混同在垃圾當中一樣,一般人怎么會到哪里去尋找呢?而作文評分中,展示亮點一獲得高分的重要途徑。字寫得不好不讓人認,客觀上不是在拒絕得高分嗎?那些字寫得好的卷子,閱卷老師能全面認讀,兩點得到足夠的呈現(xiàn),得高分的機會自然多得多。
不能寫美觀,首先寫工整;不能寫工整,首先寫干凈。只要不斷堅持,沒有人寫不好字的。完全可以說,小學認真練字,是中、高考的生產(chǎn)力。
七年級上冊政治問答題要不要寫答呢
一般不做要求,寫不寫答都不會扣分。政治問答題需要注意的是:①正確轉(zhuǎn)換成所屬題型;②從題目中找提示;③不能抄材料作答案,要用課本觀點表達;④列點; ⑤答題要采取保險性答法,即寫越多越好,6點以上,寫滿答題空白處。
數(shù)學應用題一定要寫答嗎
有幾種情況:
小學,開頭結(jié)尾要寫答
初中開頭寫解,末尾若是計算題或證明題下結(jié)論不寫“答:........”,是應用題則要寫
高中與初中差不多,但應用題可以只簡單下結(jié)論,不像初中寫答那么嚴格
我都是這么過來的,這個問題上從沒出問題,不過最終決定權是老師,應該聽老師的,不會害你的
為什么小學數(shù)學答題的時候要寫“答”但答中學理科題要
答是一種語言表達方式的縮寫,可以這樣講,理科是小學數(shù)學的應用。如果不這樣縮寫,用文科表現(xiàn)方式就麻煩了。如,三個五是多少?我根據(jù)老師講過的加法,經(jīng)過認真精確的計算,五加上五再加上五,最后等于十五??珊髞砦矣窒肫饋砹耍蠋熯€教過乘法,也能算,我又經(jīng)過精確的計算,三乘以五等于十五。我就告訴老師,三個五等于十五。不知這樣解釋是否明白。
小學二年紀奧數(shù)試題,帶答案的雖好越多越好謝謝.回答應用題的時候必須寫"答"字嗎
9. 有7個數(shù),它們的平均數(shù)是18。去掉一個數(shù)后,剩下6個數(shù)的平均數(shù)是19;再去掉一個數(shù)后,剩下的5個數(shù)的平均數(shù)是20。求去掉的兩個數(shù)的乘積。
解: 7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的兩個數(shù)是12和14它們的乘積是12*14=168
10. 有七個排成一列的數(shù),它們的平均數(shù)是 30,前三個數(shù)的平均數(shù)是28,后五個數(shù)的平均數(shù)是33。求第三個數(shù)。
解:28×3+33×5-30×7=39。
11. 有兩組數(shù),第一組9個數(shù)的和是63,第二組的平均數(shù)是11,兩個組中所有數(shù)的平均數(shù)是8。問:第二組有多少個數(shù)?
解:設第二組有x個數(shù),則63+11x=8×(9+x),解得x=3。
12.小明參加了六次測驗,第三、第四次的平均分比前兩次的平均分多2分,比后兩次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得幾分?
解:第三、四次的成績和比前兩次的成績和多4分,比后兩次的成績和少4分,推知后兩次的成績和比前兩次的成績和多8分。因為后三次的成績和比前三次的成績和多9分,所以第四次比第三次多9-8=1(分)。
13. 媽媽每4天要去一次副食商店,每 5天要去一次百貨商店。媽媽平均每星期去這兩個商店幾次?(用小數(shù)表示)
解:每20天去9次,9÷20×7=3.15(次)。
14. 乙、丙兩數(shù)的平均數(shù)與甲數(shù)之比是13∶7,求甲、乙、丙三數(shù)的平均數(shù)與甲數(shù)之比。
解:以甲數(shù)為7份,則乙、丙兩數(shù)共13×2=26(份)
所以甲乙丙的平均數(shù)是(26+7)/3=11(份)
因此甲乙丙三數(shù)的平均數(shù)與甲數(shù)之比是11:7。
15. 五年級同學參加校辦工廠糊紙盒勞動,平均每人糊了76個。已知每人至少糊了70個,并且其中有一個同學糊了88個,如果不把這個同學計算在內(nèi),那么平均每人糊74個。糊得最快的同學最多糊了多少個?
解:當把糊了88個紙盒的同學計算在內(nèi)時,因為他比其余同學的平均數(shù)多88-74=14(個),而使大家的平均數(shù)增加了76-74=2(個),說明總?cè)藬?shù)是14÷2=7(人)。因此糊得最快的同學最多糊了
74×6-70×5=94(個)。
16. 甲、乙兩班進行越野行軍比賽,甲班以4.5千米/時的速度走了路程的一半,又以5.5千米/時的速度走完了另一半;乙班在比賽過程中,一半時間以4.5千米/時的速度行進,另一半時間以5.5千米/時的速度行進。問:甲、乙兩班誰將獲勝?
解:快速行走的路程越長,所用時間越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程長,所以乙班獲勝。
17. 輪船從A城到B城需行3天,而從B城到A城需行4天。從A城放一個無動力的木筏,它漂到B城需多少天?
解:輪船順流用3天,逆流用4天,說明輪船在靜水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以輪船順流行3天的路程等于水流3+3×7=24(天)的路程,即木筏從A城漂到B城需24天。
18. 小紅和小強同時從家里出發(fā)相向而行。小紅每分走52米,小強每分走70米,二人在途中的A處相遇。若小紅提前4分出發(fā),且速度不變,小強每分走90米,則兩人仍在A處相遇。小紅和小強兩人的家相距多少米?
解:因為小紅的速度不變,相遇地點不變,所以小紅兩次從出發(fā)到相遇的時間相同。也就是說,小強第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小強第二次走了14分,推知第一次走了18分,兩人的家相距
(52+70)×18=2196(米)。
19. 小明和小軍分別從甲、乙兩地同時出發(fā),相向而行。若兩人按原定速度前進,則4時相遇;若兩人各自都比原定速度多1千米/時,則3時相遇。甲、乙兩地相距多少千米?
解:每時多走1千米,兩人3時共多走6千米,這6千米相當于兩人按原定速度1時走的距離。所以甲、乙兩地相距6×4=24(千米)
20. 甲、乙兩人沿400米環(huán)形跑道練習跑步,兩人同時從跑道的同一地點向相反方向跑去。相遇后甲比原來速度增加2米/秒,乙比原來速度減少2米/秒,結(jié)果都用24秒同時回到原地。求甲原來的速度。
解:因為相遇前后甲、乙兩人的速度和不變,相遇后兩人合跑一圈用24秒,所以相遇前兩人合跑一圈也用24秒,即24秒時兩人相遇。
設甲原來每秒跑x米,則相遇后每秒跑(x+2)米。因為甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
21. 甲、乙兩車分別沿公路從A,B兩站同時相向而行,已知甲車的速度是乙車的1.5倍,甲、乙兩車到達途中C站的時刻分別為5:00和16:00,兩車相遇是什么時刻?
解:9∶24。解:甲車到達C站時,乙車還需16-5=11(時)才能到達C站。乙車行11時的路程,兩車相遇需11÷(1+1.5)=4.4(時)=4時24分,所以相遇時刻是9∶24。
22. 一列快車和一列慢車相向而行,快車的車長是280米,慢車的車長是385米。坐在快車上的人看見慢車駛過的時間是11秒,那么坐在慢車上的人看見快車駛過的時間是多少秒?
解:快車上的人看見慢車的速度與慢車上的人看見快車的速度相同,所以兩車的車長比等于兩車經(jīng)過對方的時間比,故所求時間為11
23. 甲、乙二人練習跑步,若甲讓乙先跑10米,則甲跑5秒可追上乙;若乙比甲先跑2秒,則甲跑4秒能追上乙。問:兩人每秒各跑多少米?
解:甲乙速度差為10/5=2
速度比為(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米。
24.甲、乙、丙三人同時從A向B跑,當甲跑到B時,乙離B還有20米,丙離B還有40米;當乙跑到B時,丙離B還有24米。問:
(1) A,B相距多少米?
(2)如果丙從A跑到B用24秒,那么甲的速度是多少?
解:解:(1)乙跑最后20米時,丙跑了40-24=16(米),丙的速度
25. 在一條馬路上,小明騎車與小光同向而行,小明騎車速度是小光速度的3倍,每隔10分有一輛公共汽車超過小光,每隔20分有一輛公共汽車超過小明。已知公共汽車從始發(fā)站每次間隔同樣的時間發(fā)一輛車,問:相鄰兩車間隔幾分?
解:設車速為a,小光的速度為b,則小明騎車的速度為3b。根據(jù)追及問題“追及時間×速度差=追及距離”,可列方程
10(a-b)=20(a-3b),
解得a=5b,即車速是小光速度的5倍。小光走10分相當于車行2分,由每隔10分有一輛車超過小光知,每隔8分發(fā)一輛車。
26. 一只野兔逃出80步后獵狗才追它,野兔跑 8步的路程獵狗只需跑3步,獵狗跑4步的時間兔子能跑9步。獵狗至少要跑多少步才能追上野兔?
解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的時間等于兔跑27步的時間。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。
27. 甲、乙兩人在鐵路旁邊以同樣的速度沿鐵路方向相向而行,恰好有一列火車開來,整個火車經(jīng)過甲身邊用了18秒,2分后又用15秒從乙身邊開過。問:
(1)火車速度是甲的速度的幾倍?
(2)火車經(jīng)過乙身邊后,甲、乙二人還需要多少時間才能相遇?
解:(1)設火車速度為a米/秒,行人速度為b米/秒,則由火車的 是行人速度的11倍;
(2)從車尾經(jīng)過甲到車尾經(jīng)過乙,火車走了135秒,此段路程一人走需1350×11=1485(秒),因為甲已經(jīng)走了135秒,所以剩下的路程兩人走還需(1485-135)÷2=675(秒)。
28. 輛車從甲地開往乙地,如果把車速提高20%,那么可以比原定時間提前1時到達;如果以原速行駛100千米后再將車速提高30%,那么也比原定時間提前1時到達。求甲、乙兩地的距離。
29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。問:甲、乙單獨干這件工作各需多少天?
解:甲需要(7*3-5)/2=8(天)
乙需要(6*7-2*5)/2=16(天)
30.一水池裝有一個放水管和一個排水管,單開放水管5時可將空池灌滿,單開排水管7時可將滿池水排完。如果放水管開了2時后再打開排水管,那么再過多長時間池內(nèi)將積有半池水?
31.小松讀一本書,已讀與未讀的頁數(shù)之比是3∶4,后來又讀了33頁,已讀與未讀的頁數(shù)之比變?yōu)?∶3。這本書共有多少頁?
解:開始讀了3/7 后來總共讀了5/8
33/(5/8-3/7)=33/(11/56)=56*3=168頁
32.一件工作甲做6時、乙做12時可完成,甲做8時、乙做6時也可以完成。如果甲做3時后由乙接著做,那么還需多少時間才能完成?
解:甲做2小時的等于乙做6小時的,所以乙單獨做需要
6*3+12=30(小時) 甲單獨做需要10小時
因此乙還需要(1-3/10)/(1/30)=21天才可以完成。
33. 有一批待加工的零件,甲單獨做需4天,乙單獨做需5天,如果兩人合作,那么完成任務時甲比乙多做了20個零件。這批零件共有多少個?
解:甲和乙的工作時間比為4:5,所以工作效率比是5:4
工作量的比也5:4,把甲做的看作5份,乙做的看作4份
那么甲比乙多1份,就是20個。因此9份就是180個
所以這批零件共180個
34.挖一條水渠,甲、乙兩隊合挖要6天完成。甲隊先挖3天,乙隊接著
解:根據(jù)條件,甲挖6天乙挖2天可挖這條水渠的3/5
所以乙挖4天能挖2/5
因此乙1天能挖1/10,即乙單獨挖需要10天。
甲單獨挖需要1/(1/6-1/10)=15天。
35. 修一段公路,甲隊獨做要用40天,乙隊獨做要用24天?,F(xiàn)在兩隊同時從兩端開工,結(jié)果在距中點750米處相遇。這段公路長多少米?
36. 有一批工人完成某項工程,如果能增加 8個人,則 10天就能完成;如果能增加3個人,就要20天才能完成。現(xiàn)在只能增加2個人,那么完成這項工程需要多少天?
解:將1人1天完成的工作量稱為1份。調(diào)來3人與調(diào)來8人相比,10天少完成(8-3)×10=50(份)。這50份還需調(diào)來3人干10天,所以原來有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份)。調(diào)來2人需100÷(2+2)=25(天)。
37.
解:三角形AOB和三角形DOC的面積和為長方形的50%
所以三角形AOB占32%
16÷32%=50
38.
解:1/2*1/3=1/6
所以三角形ABC的面積是三角形AED面積的6倍。
39.下面9個圖中,大正方形的面積分別相等,小正方形的面積分別相等。問:哪幾個圖中的陰影部分與圖(1)陰影部分面積相等?
解:(2) (4) (7) (8) (9)
40. 觀察下列各串數(shù)的規(guī)律,在括號中填入適當?shù)臄?shù)
2,5,11,23,47,( ),……
解:括號內(nèi)填95
規(guī)律:數(shù)列里地每一項都等于它前面一項的2倍減1
41. 在下面的數(shù)表中,上、下兩行都是等差數(shù)列。上、下對應的兩個數(shù)字中,大數(shù)減小數(shù)的差最小是幾?
解:1000-1=999
997-995=992
每次減少7,999/7=142……5
所以下面減上面最小是5
1333-1=1332 1332/7=190……2
所以上面減下面最小是2
因此這個差最小是2。
42. 如果四位數(shù)6□□8能被73整除,那么商是多少?
解:估計這個商的十位應該是8,看個位可以知道是6
因此這個商是86。
43. 求各位數(shù)字都是 7,并能被63整除的最小自然數(shù)。
解:63=7*9
所以至少要9個7才行(因為各位數(shù)字之和必須是9的倍數(shù))
44. 1×2×3×…×15能否被 9009整除?
解:能。
將9009分解質(zhì)因數(shù)
9009=3*3*7*11*13
45. 能否用1,2,3,4,5,6六個數(shù)碼組成一個沒有重復數(shù)字,且能被11整除的六位數(shù)?為什么?
解:不能。因為1+2+3+4+5+6=21,如果能組成被11整除的六位數(shù),那么奇數(shù)位的數(shù)字和與偶數(shù)位的數(shù)字和一個為16,一個為5,而最小的三個數(shù)字之和1+2+3=6>5,所以不可能組成。
46. 有一個自然數(shù),它的最小的兩個約數(shù)之和是4,最大的兩個約數(shù)之和是100,求這個自然數(shù)。
解:最小的兩個約數(shù)是1和3,最大的兩個約數(shù)一個是這個自然數(shù)本身,另一個是這個自然數(shù)除以3的商。最大的約數(shù)與第二大
47.100以內(nèi)約數(shù)個數(shù)最多的自然數(shù)有五個,它們分別是幾?
解:如果恰有一個質(zhì)因數(shù),那么約數(shù)最多的是26=64,有7個約數(shù);
如果恰有兩個不同質(zhì)因數(shù),那么約數(shù)最多的是23×32=72和25×3=96,各有12個約數(shù);
如果恰有三個不同質(zhì)因數(shù),那么約數(shù)最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12個約數(shù)。
所以100以內(nèi)約數(shù)最多的自然數(shù)是60,72,84,90和96。
48. 寫出三個小于20的自然數(shù),使它們的最大公約數(shù)是1,但兩兩均不互質(zhì)。
解:6,10,15
49. 有336個蘋果、 252個桔子、 210個梨,用這些果品最多可分成多少份同樣的禮物?在每份禮物中,三樣水果各多少?
解:42份;每份有蘋果8個,桔子6個,梨5個。
50. 三個連續(xù)自然數(shù)的最小公倍數(shù)是168,求這三個數(shù)。
解:6,7,8。提示:相鄰兩個自然數(shù)必互質(zhì),其最小公倍數(shù)就等于這兩個數(shù)的乘積。而相鄰三個自然數(shù),若其中只有一個偶數(shù),則其最小公倍數(shù)等于這三個數(shù)的乘積;若其中有兩個偶數(shù),則其最小公倍數(shù)等于這三個數(shù)乘積的一半。
51. 一副撲克牌共54張,最上面的一張是紅桃K。如果每次把最上面的12張牌移到最下面而不改變它們的順序及朝向,那么,至少經(jīng)過多少次移動,紅桃K才會又出現(xiàn)在最上面?
解:因為[54,12]=108,所以每移動108張牌,又回到原來的狀況。又因為每次移動12張牌,所以至少移動108÷12=9(次)。
52. 爺爺對小明說:“我現(xiàn)在的年齡是你的7倍,過幾年是你的6倍,再過若干年就分別是你的5倍、4倍、3倍、2倍?!蹦阒罓敔敽托∶鳜F(xiàn)在的年齡嗎?
解:爺爺70歲,小明10歲。提示:爺爺和小明的年齡差是6,5,4,3,2的公倍數(shù),又考慮到年齡的實際情況,取公倍數(shù)中最小的。(60歲)
53. 某質(zhì)數(shù)加6或減6得到的數(shù)仍是質(zhì)數(shù),在50以內(nèi)你能找出幾個這樣的質(zhì)數(shù)?并將它們寫出來。
解:11,13,17,23,37,47。
54. 在放暑假的8月份,小明有五天是在姥姥家過的。這五天的日期除一天是合數(shù)外,其它四天的日期都是質(zhì)數(shù)。這四個質(zhì)數(shù)分別是這個合數(shù)減去1,這個合數(shù)加上1,這個合數(shù)乘上2減去1,這個合數(shù)乘上2加上1。問:小明是哪幾天在姥姥家住的?
解:設這個合數(shù)為a,則四個質(zhì)數(shù)分別為(a-1),(a+1),(2a-1),(2a+1)。因為(a-1)與(a+1)是相差2的質(zhì)數(shù),在1~31中有五組:3,5;5,7;11,13;17,19;21,31。經(jīng)試算,只有當a=6時,滿足題意,所以這五天是8月5,6,7,11,13日。
55. 有兩個整數(shù),它們的和恰好是兩個數(shù)字相同的兩位數(shù),它們的乘積恰好是三個數(shù)字相同的三位數(shù)。求這兩個整數(shù)。
解:3,74;18,37。
提示:三個數(shù)字相同的三位數(shù)必有因數(shù)111。因為111=3×37,所以這兩個整數(shù)中有一個是37的倍數(shù)(只能是37或74),另一個是3的倍數(shù)。
56. 在一根100厘米長的木棍上,從左至右每隔6厘米染一個紅點,同時從右至左每隔5厘米也染一個紅點,然后沿紅點處將木棍逐段鋸開。問:長度是1厘米的短木棍有多少根?
解:因為100能被5整除,所以可以看做都是自左向右染色。因為6與5的最小公倍數(shù)是30,即在30厘米處同時染上紅點,所以染色以30厘米為周期循環(huán)出現(xiàn)。一個周期的情況如下圖所示:
由上圖知道,一個周期內(nèi)有2根1厘米的木棍。所以三個周期即90厘米有6根,最后10厘米有1根,共7根。
57. 某種商品按定價賣出可得利潤960元,若按定價的80%出售,則虧損832元。問:商品的購入價是多少元?
解:8000元。按兩種價格出售的差額為960+832=1792(元),這個差額是按定價出售收入的20%,故按定價出售的收入為1792÷20%=8960(元),其中含利潤960元,所以購入價為8000元。
58. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。乙、丙兩桶哪桶水多?
解:乙桶多。
59. 學校數(shù)學競賽出了A,B,C三道題,至少做對一道的有25人,其中做對A題的有10人,做對B題的有13人,做對C題的有15人。如果二道題都做對的只有1人,那么只做對兩道題和只做對一道題的各有多少人?
解:只做對兩道題的人數(shù)為(10+13+15) -25 -2×1=11(人),
只做對一道題的人數(shù)為25-11-1=13(人)。
60. 學校舉行棋類比賽,設象棋、圍棋和軍棋三項,每人最多參加兩項。根據(jù)報名的人數(shù),學校決定對象棋的前六名、圍棋的前四名和軍棋的前三名發(fā)放獎品。問:最多有幾人獲獎?最少有幾人獲獎?
解:共有13人次獲獎,故最多有13人獲獎。又每人最多參加兩項,即最多獲兩項獎,因此最少有7人獲獎。
61. 在前1000個自然數(shù)中,既不是平方數(shù)也不是立方數(shù)的自然數(shù)有多少個?
解:因為312<1000<322,103=1000,所以在前1000個自然數(shù)中有31個平方數(shù),10個立方數(shù),同時還有3個六次方數(shù)(16,26,36)。所求自然數(shù)共有 1000-(31+10)+3=962(個)。
62. 用數(shù)字0,1,2,3,4可以組成多少個不同的三位數(shù)(數(shù)字允許重復)?
解:4*5*5=100個
63. 要從五年級六個班中評選出學習、體育、衛(wèi)生先進集體各一個,有多少種不同的評選結(jié)果?
解:6*6*6=216種
64. 已知15120=24×33×5×7,問:15120共有多少個不同的約數(shù)?
解: 15120的約數(shù)都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分別有5,4,2,2種,所以共有約數(shù)5×4×2×2=80(個)。
65. 大林和小林共有小人書不超過50本,他們各自有小人書的數(shù)目有多少種可能的情況?
解:他們一共可能有0~50本書,如果他們共有n本書,則大林可能有書0~n本,也就是說這n本書在兩人之間的分配情況共有(n+1)種。所以不超過 50本書的所有可能的分配情況共有1+2+3…+51=1326(種)。
66. 在右圖中,從A點沿線段走最短路線到B點,每次走一步或兩步,共有多少種不同走法?(注:路線相同步驟不同,認為是不同走法。)
解:80種。提示:從A到B共有10條不同的路線,每條路線長5個線段。每次走一個或兩個線段,每條路線有8種走法,所以不同走法共有 8×10=80(種)。
67.有五本不同的書,分別借給3名同學,每人借一本,有多少種不同的借法?
解:5*4*3=60種
68.有三本不同的書被5名同學借走,每人最多借一本,有多少種不同的借法?
解:5*4*3=60種
69. 恰有兩位數(shù)字相同的三位數(shù)共有多少個?
解:在900個三位數(shù)中,三位數(shù)各不相同的有9×9×8=648(個),三位數(shù)全相同的有9個,恰有兩位數(shù)相同的有900—648—9=243(個)。
70. 從1,3,5中任取兩個數(shù)字,從2,4,6中任取兩個數(shù)字,共可組成多少個沒有重復數(shù)字的四位數(shù)?
解:三個奇數(shù)取兩個有3種方法,三個偶數(shù)取兩個也有3種方法。共有 3×3×4!=216(個)。
71. 左下圖中有多少個銳角?
解:C(11,2)=55個
72. 10個人圍成一圈,從中選出兩個不相鄰的人,共有多少種不同選法?
解:c(10,2)-10=35種
73. 一牧場上的青草每天都勻速生長。這片青草可供27頭牛吃6周,或供23頭牛吃9周。那么可供21頭牛吃幾周?
解:將1頭牛1周吃的草看做1份,則27頭牛6周吃162份,23頭牛9周吃207份,這說明3周時間牧場長草207-162=45(份),即每周長草15份,牧場原有草162-15×6=72(份)。21頭牛中的15頭牛吃新長出的草,剩下的6頭牛吃原有的草,吃完需72÷6=12(周)。
74. 有一水池,池底有泉水不斷涌出。要想把水池的水抽干,10臺抽水機需抽 8時,8臺抽水機需抽12時。如果用6臺抽水機,那么需抽多少小時?
解:將1臺抽水機1時抽的水當做1份。泉水每時涌出量為
(8×12-10×8)÷(12-8)=4(份)。
水池原有水(10-4)×8=48(份),6臺抽水機需抽48÷(6-4)=24(時)。
75. 規(guī)定a*b=(b+a)×b,求(2*3)*5。
解:2*3=(3+2)*3=15
15*5=(15+5)*5=100
76. 1!+2!+3!+…+99!的個位數(shù)字是多少?
解:1!+2!+3!+4!=1+2+6+24=33
從5!開始,以后每一項的個位數(shù)字都是0
所以1!+2!+3!+…+99!的個位數(shù)字是3。
77(1).有一批四種顏色的小旗,任意取出三面排成一行,表示各種信號。在200個信號中至少有多少個信號完全相同?
解:4*4*4=64
200÷64=3……8
所以至少有4個信號完全相同。
77. (2)在今年入學的一年級新生中有 370多人是在同一年出生的。試說明:他們中至少有2個人是在同一天出生的。
解:因為一年最多有366天,看做366個抽屜
因為370>366,所以根據(jù)抽屜原理至少有2個人是在同一天出生的。
78. 從前11個自然數(shù)中任意取出6個,求證:其中必有2個數(shù)互質(zhì)。
證明:把前11個自然數(shù)分成如下5組
(1,2,3)(4,5)(6,7)(8,9)(10,11)
6個數(shù)放入5組必然有2個數(shù)在同一組,那么這兩個數(shù)必然互質(zhì)。
79. 小明去爬山,上山時每時行2.5千米,下山時每時行4千米,往返共用3.9時。小明往返一趟共行了多少千米?
80. 長江沿岸有A,B兩碼頭,已知客船從A到B每天航行500千米,從B到A每天航行400千米。如果客船在A,B兩碼頭間往返航行5次共用18天,那么兩碼頭間的距離是多少千米?
解:800千米。提示:從A到B與從B到A的速度比是5∶4,從A到B用
81. 請在下式中插入一個數(shù)碼,使之成為等式:
1×11×111= 111111
解答:91*11*111=111111
82.甲、乙、丙三數(shù)的和是100,甲數(shù)除以乙數(shù)與丙數(shù)除以甲數(shù)的結(jié)果都是商5余1。問:乙數(shù)是多少?
解:設乙數(shù)是x,那么甲數(shù)就是5x+1
丙數(shù)是5(5x+1)+1=25x+6
因此x+5x+1+25x+6=100
31x=93 x=3
所以乙數(shù)是3
83.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪個數(shù)的平方
解:12345654321=111111的平方
1+2+3+4+5+6+5+4+3+2+1=36=6的平方
所以原式=666666的平方。
84.某劇院有25排座位,后一排比前一排多2個座位,最后一排有70個座位。問:這個劇院一共有多少個座位?
解:第一排有70-24*2=22個座位
所以總座位數(shù)是(22+70)*25/2 =1150
85. 某城市舉行小學生數(shù)學競賽,試卷共有20道題。評分標準是:答對一道給3分,沒答的題每題給1分,答錯一道扣1分。問:所有參賽學生的得分總和是奇數(shù)還是偶數(shù)?為什么?
解:一定是偶數(shù),因為每個人20道題得分都分別是奇數(shù),20個奇數(shù)的和一定是偶數(shù)。每個人的得分都是偶數(shù),所以無論有多少參賽學生,參賽學生的得分總和一定是偶數(shù)。
86. 可以分解為三個質(zhì)數(shù)之積的最小的三位數(shù)是幾?
解:102=2*3*17
87. 兩個質(zhì)數(shù)的和是39,求這兩個質(zhì)數(shù)的積。
解:注意到奇偶性可以知道這2個質(zhì)數(shù)分別是2和37
它們的乘積是2*37=74
88. 有1,2,3,4,5,6,7,8,9九張牌,甲、乙、丙各拿了三張。甲說:“我的三張牌的積是48?!币艺f:“我的三張牌的和是15?!北f:“我的三張牌的積是63?!眴枺核麄兏髂昧四娜龔埮??
解:63=7*1*9 所以丙拿的1,7,9
48=2*3*8 所以甲拿的2,3,8
4+5+6=15 因此乙拿的是4,5,6
89. 四個連續(xù)自然數(shù)的積是3024,求這四個數(shù)。
解:考慮末尾數(shù)字,1*2*3*4末尾是4
6*7*8*9末尾也是4
其他情況下末尾都是0
11*12*13*14=24024太大
6*7*8*9=3024剛好
所以這4個數(shù)是6,7,8,9
90. 證明:任何一個三位數(shù),連著寫兩遍得到一個六位數(shù),這個六位數(shù)一定能被7,11,13整除。
解:該數(shù)形如ABCABC=ABC*1001
1001=7*11*13
所以這個六位數(shù)一定能被7,11,13整除。
91.在1~100中,所有的只有3個約數(shù)的自然數(shù)的和是多少?
解:4+9+25+49=87
92. 有一種電子鐘,每到正點響一次鈴,每過九分鐘亮一次燈。如果中午12點整它既響鈴又亮燈,那么下一次既響鈴又亮燈是什么時間?
解:[60,9]=180
180/60=3
下次是下午3點鐘。
93. 有一個數(shù)除以3余2,除以4余1。問:此數(shù)除以12余幾?
解:除以3余2的數(shù)是2,5,8,11,14。
除以4余1的數(shù)是1,5,9,。
所以此數(shù)除以12余5
94. 把16拆成若干個自然數(shù)的和,要求這些自然數(shù)的乘積盡量大,應如何拆?
解:16=3+3+3+3+2+2
乘積是3*3*3*3*2*2=324
95. 小明按1~ 3報數(shù),小紅按1~ 4報數(shù)。兩人以同樣的速度同時開始報數(shù),當兩人都報了100個數(shù)時,有多少次兩人報的數(shù)相同?
解:每12次作為一個周期
1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 4 1 2 3 4 1 2 3 4
每個周期兩人有3次報的數(shù)一樣
100=12*8+4
所以兩個人有8*3+3=27次報的數(shù)相同。
96. 某自然數(shù)加10或減10皆為平方數(shù),求這個自然數(shù)。
解:設這個數(shù)是x
x+10=m^2
x-10=n^2
m^2-n^2=20 (m+n)(m-n)=20
m=6,n=4
所以x=6^2-10=26
97. 已知某鐵路橋長1000米,一列火車從橋上通過,測得火車從開始上橋到完全下橋共用120秒,整列火車完全在橋上的時間為80秒。求火車的速度和長度。
解:120秒行駛的距離是橋長+車長
80秒行駛的距離是橋長-車長
所以80(1000+車長)=120(1000-車長)
車長=200米
火車的速度是10米/秒
98. 甲、乙二人按順時針方向沿圓形跑道練習跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他們分別從圓形跑道直徑的兩端同時出發(fā),那么出發(fā)后多少分甲追上乙?
解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分鐘
99. 甲、乙比賽乒乓球,五局三勝。已知甲勝了第一局,并最終獲勝。問:各局的勝負情況有多少種可能?
解:甲 甲 甲
甲 甲 乙 甲
甲 甲 乙 乙 甲
甲 乙 甲 甲
甲 乙 甲 乙 甲
甲 乙 乙 甲 甲
經(jīng)枚舉發(fā)現(xiàn)共有6種可能。
100. 甲、乙二人 2時共可加工 54個零件,甲加工 3時的零件比乙加工4時的零件還多4個。問:甲每時加工多少個零件?
解:甲乙二人一小時共可加工零件27個
設甲每小時加工x個,那么乙每小時加工27-x個
根據(jù)條件得3x=4(27-x)+4
7x=112 x=16
答:甲每小時加工零件16個
以上就是小編為大家?guī)淼男W生答題卡上的閱讀與理解的簡答題要寫答嗎的全部內(nèi)容,更多精彩請繼續(xù)關注。(文章共14756字)