分析 (1)作點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)A′,連接A′B交y軸于點(diǎn)C,此時(shí)點(diǎn)C即是所求.由點(diǎn)A為一次函數(shù)與反比例函數(shù)的交點(diǎn),利用待定系數(shù)法和反比例函數(shù)圖象點(diǎn)的坐標(biāo)特征即可求出一次函數(shù)與反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點(diǎn)A、B的坐標(biāo),再根據(jù)點(diǎn)A′與點(diǎn)A關(guān)于y軸對(duì)稱,求出點(diǎn)A′的坐標(biāo),設(shè)出直線A′B的解析式為y=mx+n,結(jié)合點(diǎn)的坐標(biāo)利用待定系數(shù)法即可求出直線A′B的解析式,令直線A′B解析式中x為0,求出y的值,即可得出結(jié)論;
(2)根據(jù)兩函數(shù)圖象的上下關(guān)系結(jié)合點(diǎn)A、B的坐標(biāo),即可得出不等式的解集.
解答 解:(1)作點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)A′,連接A′B交y軸于點(diǎn)C,此時(shí)點(diǎn)C即是所求,如圖所示.
∵反比例函數(shù)y=$\frac{k}{x}$(x<0)的圖象過(guò)點(diǎn)A(-1,2),
∴k=-1×2=-2,
∴反比例函數(shù)解析式為y=-$\frac{2}{x}$(x<0);
∵一次函數(shù)y=$\frac{1}{2}$x+b的圖象過(guò)點(diǎn)A(-1,2),
∴2=-$\frac{1}{2}$+b,解得:b=$\frac{5}{2}$,
∴一次函數(shù)解析式為y=$\frac{1}{2}$x+$\frac{5}{2}$.
聯(lián)立一次函數(shù)解析式與反比例函數(shù)解析式成方程組:$\left\{\begin{array}{l}{y=\frac{1}{2}x+\frac{5}{2}}\\{y=-\frac{2}{x}}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=-4}\\{y=\frac{1}{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,
∴點(diǎn)A的坐標(biāo)為(-1,2)、點(diǎn)B的坐標(biāo)為(-4,$\frac{1}{2}$).
∵點(diǎn)A′與點(diǎn)A關(guān)于y軸對(duì)稱,
∴點(diǎn)A′的坐標(biāo)為(1,2),
設(shè)直線A′B的解析式為y=mx+n,
則有$\left\{\begin{array}{l}{2=m+n}\\{\frac{1}{2}=-4m+n}\end{array}\right.$,解得:$\left\{\begin{array}{l}{m=\frac{3}{10}}\\{n=\frac{17}{10}}\end{array}\right.$,
∴直線A′B的解析式為y=$\frac{3}{10}$x+$\frac{17}{10}$.
令y=$\frac{3}{10}$x+$\frac{17}{10}$中x=0,則y=$\frac{17}{10}$,
∴點(diǎn)C的坐標(biāo)為(0,$\frac{17}{10}$).
(2)觀察函數(shù)圖象,發(fā)現(xiàn):
當(dāng)x<-4或-1<x<0時(shí),一次函數(shù)圖象在反比例函數(shù)圖象下方,
∴當(dāng)$\frac{1}{2}$x+$\frac{5}{2}$<-$\frac{2}{x}$時(shí),x的取值范圍為x<-4或-1<x<0.
點(diǎn)評(píng) 本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題、軸對(duì)稱中的最短線路問(wèn)題、利用待定系數(shù)法求函數(shù)解析式以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是:(1)求出直線A′B的解析式;(2)找出交點(diǎn)坐標(biāo).本題屬于中檔題,難度不大,但解題過(guò)程稍顯繁瑣,解決該題型題目時(shí),找出點(diǎn)的坐標(biāo),利用待定系數(shù)法求出函數(shù)解析式是關(guān)鍵.