分析 (1)先證明四邊形AOCD是菱形,從而得到∠AOD=∠COD=60°,再根據(jù)切線的性質(zhì)得∠FDO=90°,接著證明△FDO≌△FBO得到∠ODF=∠OBF=90°,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)在Rt△OBF中,利用60度的正切的定義求解.
解答 (1)證明:連結(jié)OD,如圖,∵四邊形AOCD是平行四邊形,
而OA=OC,
∴四邊形AOCD是菱形,
∴△OAD和△OCD都是等邊三角形,
∴∠AOD=∠COD=60°,
∴∠FOB=60°,
∵EF為切線,
∴OD⊥EF,
∴∠FDO=90°,
在△FDO和△FBO中
$\left\{\begin{array}{l}{OD=OB}\\{∠FOD=∠FOB}\\{FO=FO}\end{array}\right.$,
∴△FDO≌△FBO,
∴∠ODF=∠OBF=90°,
∴OB⊥BF,
∴BF是⊙O的切線;
(2)解:在Rt△OBF中,∵∠FOB=60°,
而tan∠FOB=$\frac{BF}{OB}$,
∴BF=1×tan60°=$\sqrt{3}$.
∵∠E=30°,
∴EF=2BF=2$\sqrt{3}$.
點評 本題考查了切線的判斷與性質(zhì):圓的切線垂直于經(jīng)過切點的半徑;經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.有切線時,常?!坝龅角悬c連圓心得半徑”.