分析 (1)以C為圓心,任意長為半徑畫弧,交BC,AC兩點(diǎn),再以這兩點(diǎn)為圓心,大于這兩點(diǎn)的線段的一半為半徑畫弧,過這兩弧的交點(diǎn)與C在直線交AB于D即可,根據(jù)過直線外一點(diǎn)作已知直線的垂線的方法可作出垂線即可;
(2)根據(jù)平行線的性質(zhì)和角平分線的性質(zhì)推出∠ECD=∠EDC,進(jìn)而證得DE=CE,由DE∥BC,推出△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)即可推得結(jié)論.
解答 解:(1)如圖所示;
(2)解:∵DC是∠ACB的平分線,
∴∠BCD=∠ACD,
∵DE⊥AC,BC⊥AC,
∴DE∥BC,∴∠EDC=∠BCD,
∴∠ECD=∠EDC,∴DE=CE,
∵DE∥BC,
∴△ADE∽△ABC,
∴$\frac{DE}{BC}$=$\frac{AE}{AC}$,
設(shè)DE=CE=x,則AE=6-x,
∴$\frac{x}{4}$=$\frac{6-x}{6}$,
解得:x=$\frac{12}{5}$,
即DE=$\frac{12}{5}$,
故答案為:$\frac{12}{5}$.
點(diǎn)評(píng) 本題考查了角的平分線的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),相似三角形的判定和性質(zhì),基本作圖,解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.