教培參考
教育培訓(xùn)行業(yè)知識型媒體
發(fā)布時間: 2024年12月26日 13:57
教學(xué)目標(biāo):
(一)教學(xué)知識點:
1、對數(shù)函數(shù)的概念;
2.對數(shù)函數(shù)的圖象和性質(zhì).
(二)能力訓(xùn)練要求:
1.理解對數(shù)函數(shù)的概念;
2.掌握對數(shù)函數(shù)的圖象和性質(zhì)
(三)德育滲透目標(biāo):
1.用聯(lián)系的觀點分析問題;
2.認識事物之間的互相轉(zhuǎn)化
教學(xué)重點:
對數(shù)函數(shù)的圖象和性質(zhì)
教學(xué)難點:
對數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系
教學(xué)方法:
聯(lián)想、類比、發(fā)現(xiàn)、探索
教學(xué)輔助:
多媒體
教學(xué)過程:
一、引入對數(shù)函數(shù)的概念
由學(xué)生的預(yù)習(xí),可以直接回答“對數(shù)函數(shù)的概念”
由指數(shù)、對數(shù)的定義及指數(shù)函數(shù)的概念,我們進行類比,可否猜想有:
問題:
1.指數(shù)函數(shù)是否存在反函數(shù)?
2.求指數(shù)函數(shù)的反函數(shù)
①;指出反函數(shù)的定義域。
3.結(jié)論
所以函數(shù)與指數(shù)函數(shù)互為反函數(shù)。
這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).
二、講授新課
1.對數(shù)函數(shù)的定義:
定義域:(0,+∞);值域:(-∞,+∞)
2.對數(shù)函數(shù)的圖象和性質(zhì):
因為對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關(guān)于直線對稱.
因此,我們只要畫出和圖象關(guān)于直線對稱的曲線,就可以得到的圖象.
研究指數(shù)函數(shù)時,我們分別研究了底數(shù)和兩種情形.
那么我們可以畫出與圖象關(guān)于直線對稱的曲線得到的圖象.
還可以畫出與圖象關(guān)于直線對稱的曲線得到的圖象.
請同學(xué)們作出與的草圖,并觀察它們具有一些什么特征?
對數(shù)函數(shù)的圖象與性質(zhì):
圖象
性質(zhì)(1)定義域:
(2)值域:
(3)過定點,即當(dāng)時,
(4)上的增函數(shù)
(4)上的減函數(shù)
3.圖象的加深理解:
下面我們來研究這樣幾個函數(shù):
我們發(fā)現(xiàn):
與圖象關(guān)于X軸對稱;與圖象關(guān)于X軸對稱.
一般地,與圖象關(guān)于X軸對稱.
再通過圖象的變化(變化的值),我們發(fā)現(xiàn):
(1)時,函數(shù)為增函數(shù),
(2)時,函數(shù)為減函數(shù),
4.練習(xí):
(1)如圖:曲線分別為函數(shù)的圖像,試問的大小關(guān)系如何?
(2)比較下列各組數(shù)中兩個值的大?。?/p>
(3)解關(guān)于x的不等式:
思考:(1)比較大?。?/p>
(2)解關(guān)于x的不等式:
三、小結(jié)
這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).并且研究了對數(shù)函數(shù)的圖象和性質(zhì).
四、課后作業(yè)
課本P85,習(xí)題2.8,1、3
教學(xué)內(nèi)容:
人教版九年義務(wù)教育初中第三冊第108頁
教學(xué)目標(biāo):
1. 1.理解二次函數(shù)的意義;會用描點法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2. 2.通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3. 3.通過二次函數(shù)的教學(xué)讓學(xué)生進一步體會研究函數(shù)的一般方法;加深對于數(shù)形結(jié)合思想認識。
教學(xué)重點:二次函數(shù)的意義;會畫二次函數(shù)圖象。
教學(xué)難點:描點法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程設(shè)計:
一.創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:
1.寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2. ①
2.寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識。(板書課題)
二.歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),
那么,y叫做x的二次函數(shù).
注意:(1)必須a≠0,否則就不是二次函數(shù)了.而b,c兩數(shù)可以是零.(2)由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實數(shù).
練習(xí):1.舉例子:請同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2.出難題:請同學(xué)給大家出示一個函數(shù),請同學(xué)判斷是否是二次函數(shù)。
(若學(xué)生考慮不全,教師給予補充。如:;;;的形式。)
(通過學(xué)生觀察、歸納定義加深對概念的理解,既培養(yǎng)了學(xué)生的實踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。二次函數(shù)我們也會按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。
(在這里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時進行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進一步培養(yǎng)終身學(xué)習(xí)的能力。)
三.嘗試模仿、鞏固提高
讓我們先從最簡單的二次函數(shù)y=ax2入手展開研究
1. 1.嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?
請同學(xué)們畫出函數(shù)y=x2的圖象。
(學(xué)生分別畫圖,教師巡視了解情況。)
2. 2.模仿鞏固:教師將了解到的各種不同圖象用實物投影向大家展示,到底哪一個對呢?下面師生共同畫出函數(shù)y=x2的圖象。
解:一、列表:
x
-3
-2
-1
1
2
3
Y=x2
9
4
1
1
4
9
二、描點、連線:按照表格,描出各點.然后用光滑的曲線,按照x(點的橫坐標(biāo))由小到大的順序把各點連結(jié)起來.
對照教師畫的圖象一一分析學(xué)生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點注意。
練習(xí):畫出函數(shù);的圖象(請兩個同學(xué)板演)
X
-3
-2
-1
1
2
3
Y=0.5X2
4.5
2
0.5
0.5
02
4.5
Y=-X2
-9
-4
-1
-1
-4
-9
畫好之后教師根據(jù)情況講評,并引導(dǎo)學(xué)生觀察圖象形狀得出:二次函數(shù)y=ax2的圖象是一條拋物線。
(這里,教師在學(xué)生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學(xué)生學(xué)會畫圖象的方法;并及時安排練習(xí)鞏固剛剛學(xué)到的新知識,通過觀察,感悟拋物線名稱的由來。)
三.運用新知、變式探究
畫出函數(shù)y=5x2圖象
學(xué)生在畫圖象的過程中遇到函數(shù)值較大的困難,不知如何是好。
x
-0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5
Y=5x2
1.25
0.8
0.45
0.2
0.05
0.05
0.2
0.45
0.8
1.25
教師出示已畫好的圖象讓學(xué)生觀察
注意:1.畫圖象應(yīng)描7個左右的點,描的點越多圖象越準(zhǔn)確。
2.自變量X的取值應(yīng)注意關(guān)于Y軸對稱。
3.對于不同的二次函數(shù)自變量X的取值應(yīng)更加靈活,例如可以取分數(shù)。
四.歸納小結(jié)、延續(xù)探究
教師引導(dǎo)學(xué)生觀察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見;互相改進,互相完善。最終得到如下性質(zhì):
一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對稱軸是Y軸,頂點是坐標(biāo)原點;當(dāng)a>0時,圖象的開口向上,最低點為(0,0);當(dāng)a<0時,圖象的開口向下,最高點為(0,0)。
五.回顧反思、總結(jié)收獲
在這一環(huán)節(jié)中,教師請同學(xué)們回顧一節(jié)課的學(xué)習(xí)暢談自己的收獲或多、或少、或幾點、或全面,總之是人人有所得,個個有提高。這也正是新課標(biāo)中所倡導(dǎo)的新的理念——不同的人在數(shù)學(xué)上得到不同的發(fā)展。
(在整個一節(jié)課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問題,我也鼓勵學(xué)生大膽思考,積極嘗試,不怕困難,一個人完不成,講不透,第二個人、第三個人補充,直到完成整個例題。這樣上課氣氛非常活躍,學(xué)生之間常會因為某個觀點的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時地對某些觀點作出判斷,或與學(xué)生一同討論。)
一、教學(xué)目標(biāo):
1、知道一次函數(shù)與正比例函數(shù)的定義、
2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì);
3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系、
4、掌握直線的平移法則簡單應(yīng)用、
5、能應(yīng)用本章的基礎(chǔ)知識熟練地解決數(shù)學(xué)問題。
二、教學(xué)重、難點:
重點:初步構(gòu)建比較系統(tǒng)的函數(shù)知識體系。
難點:對直線的平移法則的理解,體會數(shù)形結(jié)合思想。
三、教學(xué)過程:
1、一次函數(shù)與正比例函數(shù)的定義:
一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)
正比例函數(shù):對于 y=kx+b,當(dāng)b=0, k≠0時,有y=kx,此時稱y是x的正比例函數(shù),k為正比例系數(shù)。
2、 一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:
(1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。
(2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx
平行的一條直線。
基礎(chǔ)訓(xùn)練:
1、 寫出一個圖象經(jīng)過點(1,- 3)的函數(shù)解析式為: 。
2、直線y = - 2X - 2 不經(jīng)過第 象限,y隨x的增大而。
3、如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:。
4、已知正比例函數(shù) y =(3k-1)x,,若y隨x的增大而增大,則k是: 。
5、過點(0,2)且與直線y=3x平行的直線是: 。
6、若正比例函數(shù)y =(1-2m)x 的圖像過點A(x1,y1)和點B(x2,y2)當(dāng)x1<x2時,y1>y2,則m的取值范圍是: 。
7、若y-2與x-2成正比例,當(dāng)x=-2時,y=4,則x= 時,y = -4。
8、直線y=- 5x+b與直線y=x-3都交y軸上同一點,則b的值為 。
9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。(1)求線段AB的長。(2)求直線AC的解析式。
四、教學(xué)反思:
教師認真?zhèn)湔n,查閱資料,搜集有針對性的訓(xùn)練題,學(xué)生只要課堂上能按照教師的思路去做就很高效了。課堂訓(xùn)練以競賽的形式進行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動,學(xué)生沒有保持住持久的緊張狀態(tài)。
課前先把所有的復(fù)習(xí)任務(wù)都交給學(xué)生完成,教師指導(dǎo)學(xué)生瀏覽教材、查閱資料歸納本章的基本概念、基本性質(zhì)、基本方法,并收集與每個知識點相關(guān)的有針對性的問題,也可以自己編題,同時要把每一個問題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學(xué)生展示自己的舞臺,在這個舞臺上學(xué)生是主角,在這個舞臺上學(xué)生可以成果共享,在這個舞臺上學(xué)生收獲著自己的收獲。臺上他們是主角,臺下他們也是主角。
從另一個角度體會到了減輕學(xué)生負擔(dān)的深刻含義,不單指減少學(xué)生課后學(xué)習(xí)的時間,更重要的是提高學(xué)生學(xué)習(xí)的質(zhì)量、效率,我的這節(jié)課失敗之處就是過分的注重了前者,而忽略了實效性。那么在今后的復(fù)習(xí)課教學(xué)中我要多思多想、多問多聽(問問老師、聽聽學(xué)生的想法),力求在真正減輕學(xué)生負擔(dān)的基礎(chǔ)上打造高效課堂。
教學(xué)目標(biāo):
會用待定系數(shù)法求二次函數(shù)的解析式,能結(jié)合二次函數(shù)的圖象掌握二次函數(shù)的性質(zhì),能較熟練地利用函數(shù)的性質(zhì)解決函數(shù)與圓、三角形、四邊形以及方程等知識相結(jié)合的綜合題。
重點難點:
重點;用待定系數(shù)法求函數(shù)的解析式、運用配方法確定二次函數(shù)的特征。
難點:會運用二次函數(shù)知識解決有關(guān)綜合問題。
教學(xué)過程:
一、例題精析,強化練習(xí),剖析知識點
用待定系數(shù)法確定二次函數(shù)解析式.
例:根據(jù)下列條件,求出二次函數(shù)的解析式。
(1)拋物線y=ax2+bx+c經(jīng)過點(0,1),(1,3),(-1,1)三點。
(2)拋物線頂點P(-1,-8),且過點A(0,-6)。
(3)已知二次函數(shù)y=ax2+bx+c的圖象過(3,0),(2,-3)兩點,并且以x=1為對稱軸。
(4)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過一次函數(shù)y=-3/2x+3的圖象與x軸、y軸的交點;且過(1,1),求這個二次函數(shù)解析式,并把它化為y=a(x-h(huán))2+k的形式。
學(xué)生活動:學(xué)生小組討論,題目中的四個小題應(yīng)選擇什么樣的函數(shù)解析式?并讓學(xué)生闡述解題方法。
教師歸納:二次函數(shù)解析式常用的有三種形式:(1)一般式:y=ax2+bx+c(a≠0)
(2)頂點式:y=a(x-h(huán))2+k(a≠0)(3)兩根式:y=a(x-x1)(x-x2)(a≠0)
當(dāng)已知拋物線上任意三點時,通常設(shè)為一般式y(tǒng)=ax2+bx+c形式。
當(dāng)已知拋物線的頂點與拋物線上另一點時,通常設(shè)為頂點式y(tǒng)=a(x-h(huán))2+k形式。
當(dāng)已知拋物線與x軸的交點或交點橫坐標(biāo)時,通常設(shè)為兩根式y(tǒng)=a(x-x1)(x-x2)
強化練習(xí):已知二次函數(shù)的圖象過點A(1,0)和B(2,1),且與y軸交點縱坐標(biāo)為m。
(1)若m為定值,求此二次函數(shù)的解析式;
(2)若二次函數(shù)的圖象與x軸還有異于點A的另一個交點,求m的取值范圍。
二、知識點串聯(lián),綜合應(yīng)用
例:如圖,拋物線y=ax2+bx+c過點A(-1,0),且經(jīng)過直線y=x-3與坐標(biāo)軸的兩個交
一、教材分析
1.教材的地位和作用
(1)函數(shù)是初等數(shù)學(xué)中最基本的概念之一,貫穿于整個初等數(shù)學(xué)體系之中,也是實際生活中數(shù)學(xué)建模的重要工具之一,二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點和難點之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。在歷屆佛山市中考試題中,二次函數(shù)都是必不可少的內(nèi)容。
(2)二次函數(shù)的圖像和性質(zhì)體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生基本數(shù)學(xué)思想和素養(yǎng)的形成起推動作用。
(3)二次函數(shù)與一元二次方程、不等式等知識的聯(lián)系,使學(xué)生能更好地將所學(xué)知識融會貫通。
2.課標(biāo)要求:
①通過對實際問題情境的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。
②會用描點法畫出二次函數(shù)的圖象,能從圖象上認識二次函數(shù)的性質(zhì)。
③會根據(jù)公式確定圖象的頂點、開口方向和對稱軸(公式不要求記憶和推導(dǎo))。
④會根據(jù)二次函數(shù)的性質(zhì)解決簡單的實際問題。
3.學(xué)情分析:
(1)初三學(xué)生在新課的學(xué)習(xí)中已掌握二次函數(shù)的定義、圖像及性質(zhì)等基本知識。
(2)學(xué)生的分析、理解能力較學(xué)習(xí)新課時有明顯提高。
(3)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情很高,思維敏捷,具有一定的自主探究和合作學(xué)習(xí)的能力。
(4)學(xué)生能力差異較大,兩極分化明顯。
4.教學(xué)目標(biāo)
認知目標(biāo)
(1)掌握二次函數(shù) y=圖像與系數(shù)符號之間的關(guān)系。通過復(fù)習(xí),掌握各類形式的二次函數(shù)解析式求解方法和思路,能夠一題多解,發(fā)散提高學(xué)生的創(chuàng)造思維能力。
能力目標(biāo)
提高學(xué)生對知識的整合能力和分析能力。
情感目標(biāo)
制作動畫增加直觀效果,激發(fā)學(xué)生興趣,感受數(shù)學(xué)之美。在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動中學(xué)會感受探索與創(chuàng)造,體驗成功的喜悅。
5.教學(xué)重點與難點:
重點:(1)掌握二次函數(shù)y=圖像與系數(shù)符號之間的關(guān)系。
(2) 各類形式的二次函數(shù)解析式的求解方法和思路。
(3)本節(jié)課主要目的,對歷屆中考題中的二次函數(shù)題目進行類比分析,達到融會貫通的作用。
難點:(1)已知二次函數(shù)的解析式說出函數(shù)性質(zhì)
(2)運用數(shù)形結(jié)合思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決幾何問題.
二、教學(xué)方法:
1. 運用多媒體進行輔助教學(xué),既直觀、生動地反映圖形變換,增強教學(xué)的條理性和形象性,又豐富了課堂的內(nèi)容,有利于突出重點、分散難點,更好地提高課堂效率。
2.將知識點分類,讓學(xué)生通過這個框架結(jié)構(gòu)很容易看出不同解析式表示的二次函數(shù)的內(nèi)在聯(lián)系,讓學(xué)生形成一個清晰、系統(tǒng)、完整的知識網(wǎng)絡(luò)。
3.師生互動探究式教學(xué),以課標(biāo)為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初三學(xué)生的求知心理和已有的認知水平開展教學(xué).形成學(xué)生自動、生生助動、師生互動,教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時考慮到學(xué)生的個體差異,在教學(xué)的各個環(huán)節(jié)中進行分層施教,讓每一個學(xué)生都能獲得知識,能力得到提高。
三、學(xué)法指導(dǎo):
1.學(xué)法引導(dǎo)
“授人之魚,不如授人之漁”在教學(xué)過程中,不但要傳授學(xué)生基本知識,還要培育學(xué)生主動思考,親自動手,自我發(fā)現(xiàn)等能力,增強學(xué)生的綜合素質(zhì),從而達到教學(xué)終極目標(biāo)。
2.學(xué)法分析:新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師有組織、有目的、有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主學(xué)習(xí),合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動手”、“動腦”、“動口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。
3、設(shè)計理念:《課標(biāo)》要求,對于課程實施和教學(xué)過程,教師在教學(xué)過程中應(yīng)與學(xué)生積極互動、共同發(fā)展,要處理好傳授知識與培養(yǎng)能力的關(guān)系,關(guān)注個體差異,滿足不同學(xué)生的學(xué)習(xí)需要.”
4、設(shè)計思路:不把復(fù)習(xí)課簡單地看作知識點的復(fù)習(xí)和習(xí)題的訓(xùn)練,而是通過復(fù)習(xí)舊知識,拓展學(xué)生思維,提高學(xué)生學(xué)習(xí)能力,增強學(xué)生分析問題,解決問題的能力。
四、教學(xué)過程:
1、教學(xué)環(huán)節(jié)設(shè)計:
根據(jù)教材的結(jié)構(gòu)特點,緊緊抓住新舊知識的內(nèi)在聯(lián)系,運用類比、聯(lián)想、轉(zhuǎn)化的思想,突破難點.
本節(jié)課的教學(xué)設(shè)計環(huán)節(jié):
創(chuàng)設(shè)情境,引入新知 :復(fù)習(xí)舊知識的目的是對學(xué)生新課應(yīng)具備的“認知前提能力”和“情感前提特征進行檢測判斷”。學(xué)生自主完成,不僅體現(xiàn)學(xué)生的自主學(xué)習(xí)意識,調(diào)動學(xué)生學(xué)習(xí)積極性,也能為課堂教學(xué)掃清障礙。為了更好地理解、掌握二次函數(shù)圖像與系數(shù)之間的關(guān)系,根據(jù)不同學(xué)生的學(xué)習(xí)需要,按照分層遞進的教學(xué)原則,設(shè)計安排了6個由淺入深的題型,讓每一個學(xué)生都能為下一步的探究做好準(zhǔn)備。
自主探究,合作交流:本環(huán)節(jié)通過開放性題的設(shè)置,發(fā)散學(xué)生思維,學(xué)生對二次函數(shù)的性質(zhì)作出全面分析。讓學(xué)生在教師的引導(dǎo)下,獨立思考,相互交流,培養(yǎng)學(xué)生自主探索,合作探究的能力。通過學(xué)生觀察、思考、交流,經(jīng)歷發(fā)現(xiàn)過程,加深對重點知識的理解。
運用知識,體驗成功:根據(jù)不同層次的學(xué)生,同時配有兩個由低到高、層次不同的鞏固性習(xí)題,體現(xiàn)漸進性原則,希望學(xué)生能將知識轉(zhuǎn)化為技能。讓每一個學(xué)生獲得成功,感受成功的喜悅。
安排三個層次的練習(xí)。
(一)從定義出發(fā)的簡單題目。
(二)典型例題分析,通過反饋使學(xué)生掌握重點內(nèi)容。
(三)綜合應(yīng)用能力提高。
既培養(yǎng)學(xué)生運用知識的能力,又培養(yǎng)學(xué)生的創(chuàng)新意識。引導(dǎo)學(xué)生對學(xué)習(xí)內(nèi)容進行梳理,將知識系統(tǒng)化,條理化,網(wǎng)絡(luò)化,對在獲取新知識中體現(xiàn)出來的數(shù)學(xué)思想、方法、策略進行反思,從而加深對知識的理解。并增強學(xué)生分析問題,運用知識的能力。
(四)方法與小結(jié)
由總結(jié)、歸納、反思,加深對知識的理解,并且能熟練運用所學(xué)知識解決問題。
2、作業(yè)設(shè)計:(見課件)
3、板書設(shè)計:(見課件)
五、評價分析:
本節(jié)課的設(shè)計,我以學(xué)生活動為主線,通過“觀察、分析、探索、交流”等過程,讓學(xué)生在復(fù)習(xí)中溫故而知新,在應(yīng)用中獲得發(fā)展,從而使知識轉(zhuǎn)化為能力。本節(jié)教學(xué)過程主要由創(chuàng)設(shè)情境,引入新知――合作交流;探究新知――運用知識,體驗成功;知識深化――應(yīng)用提高;歸納小結(jié)――形成結(jié)構(gòu)等環(huán)節(jié)構(gòu)成,環(huán)環(huán)相扣,緊密聯(lián)系,體現(xiàn)了讓學(xué)生成為行為主體即“動手實踐、自主探索、合作交流“的《數(shù)學(xué)新課標(biāo)》要求。本設(shè)計同時還注重發(fā)揮多媒體的輔助作用,使學(xué)生更好地理解數(shù)學(xué)知識;貫穿整個課堂教學(xué)的活動設(shè)計,讓學(xué)生在活動、合作、開放、探究、交流中,愉悅地參與數(shù)學(xué)活動的數(shù)學(xué)教學(xué)。
一、說教材
1、教材的地位和作用
函數(shù)是高中數(shù)學(xué)的核心,而對數(shù)函數(shù)是高中階段所要研究的重要的基本初等函數(shù)之一.本節(jié)內(nèi)容是在學(xué)生已經(jīng)學(xué)過指數(shù)函數(shù)、對數(shù)及反函數(shù)的基礎(chǔ)上引入的,因此既是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進一步認識與理解.對數(shù)函數(shù)在生產(chǎn)、生活實踐中都有許多應(yīng)用.本節(jié)課的學(xué)習(xí)使學(xué)生的知識體系更加完整、系統(tǒng),為學(xué)生今后進一步學(xué)習(xí)對數(shù)方程、對數(shù)不等式等提供了必要的基礎(chǔ)知識.
2、教學(xué)目標(biāo)的確定及依據(jù)
根據(jù)教學(xué)大綱要求,結(jié)合教材,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,我制定了如下的教學(xué)目標(biāo):
(1) 知識目標(biāo):理解對數(shù)函數(shù)的意義;掌握對數(shù)函數(shù)的圖像與性質(zhì);初步學(xué)會用
對數(shù)函數(shù)的性質(zhì)解決簡單的問題.
(2) 能力目標(biāo):滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、
分析、歸納等邏輯思維能力.
(3) 情感目標(biāo):通過指數(shù)函數(shù)和對數(shù)函數(shù)在圖像與性質(zhì)上的對比,使學(xué)生欣賞數(shù)
學(xué)的精確和美妙之處,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
3、教學(xué)重點與難點
重點:對數(shù)函數(shù)的意義、圖像與性質(zhì).
難點:對數(shù)函數(shù)性質(zhì)中對于在a1與01兩種情況函數(shù)值的不同變化.
二、說教法
學(xué)生在整個教學(xué)過程中始終是認知的主體和發(fā)展的主體,教師作為學(xué)生學(xué)習(xí)的指導(dǎo)者,應(yīng)充分地調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,有效地滲透數(shù)學(xué)思想方法.根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),對于本節(jié)課我主要考慮了以下兩個方面:
1、教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生實驗、觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法.
2、教學(xué)手段:
計算機多媒體輔助教學(xué).
三、說學(xué)法
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身.本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時間和空間,我進行了以下學(xué)法指導(dǎo):
(1)類比學(xué)習(xí):與指數(shù)函數(shù)類比學(xué)習(xí)對數(shù)函數(shù)的圖像與性質(zhì).
(2)探究定向性學(xué)習(xí):學(xué)生在教師建立的情境下,通過思考、分析、操作、探索,
歸納得出對數(shù)函數(shù)的圖像與性質(zhì).
(3)主動合作式學(xué)習(xí):學(xué)生在歸納得出對數(shù)函數(shù)的圖像與性質(zhì)時,通過小組討論,
使問題得以圓滿解決.
四、說教程
1、溫故知新
我通過復(fù)習(xí)細胞分裂問題,由指數(shù)函數(shù) 引導(dǎo)學(xué)生逐步得到對數(shù)函數(shù)的意義及對數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系:互為反函數(shù).
設(shè)計意圖:既復(fù)習(xí)了指數(shù)函數(shù)和反函數(shù)的有關(guān)知識,又與本節(jié)內(nèi)容有密切關(guān)系,
有利于引出新課.為學(xué)生理解新知清除了障礙,有意識地培養(yǎng)學(xué)生
分析問題的能力.
2、探求新知
一、 教學(xué)內(nèi)容:三角函數(shù)
【結(jié)構(gòu)】
二、要求
(一)理解任意角的概念、弧度的意義、正確進行弧度與角度的換算;掌握任意角三角函數(shù)的定義、會利用單位圓中的三角函數(shù)線表示正弦、余弦、正切。
(二)掌握三角函數(shù)公式的運用(即同角三角函數(shù)基本關(guān)系、誘導(dǎo)公式、和差及倍角公式)
(三)能正確運用三角公式進行簡單三角函數(shù)式的化簡、求值和恒等式證明。
(四)會用單位圓中的三角函數(shù)線畫出正弦函數(shù)、正切函數(shù)的圖線、并在此基礎(chǔ)上由誘導(dǎo)公式畫出余弦函數(shù)的圖象、會用“五點法”畫出正弦函數(shù)、余弦函數(shù)及Y=Asin(ωx φ)的簡圖、理解A、ω、 < 1271864542"> 的意義。
三、熱點分析
1、 近幾年高考對三角變換的考查要求有所降低,而對本章的內(nèi)容的考查有逐步加強的趨勢,主要表現(xiàn)在對三角函數(shù)的圖象與性質(zhì)的考查上有所加強。
2、 對本章內(nèi)容一般以選擇、填空題形式進行考查,且難度不大,從1993年至2002年考查的內(nèi)容看,大致可分為四類問題 (1)與三角函數(shù)單調(diào)性有關(guān)的問題;
(2)與三角函數(shù)圖象有關(guān)的問題;
(3)應(yīng)用同角變換和誘導(dǎo)公式,求三角函數(shù)值及化簡和等式證明的問題;
(4)與周期有關(guān)的問題
3、 基本的解題規(guī)律為:觀察差異(或角,或函數(shù),或運算),尋找聯(lián)系(借助于熟知的公式、或技巧),分析綜合(由因?qū)Ч驁?zhí)果索因),實現(xiàn)轉(zhuǎn)化。解題規(guī)律:在三角函數(shù)求值問題中的解題思路,一般是運用基本公式,將未知角變換為已知角求解;在最值問題和周期問題中,解題思路是合理運用基本公式將表達式轉(zhuǎn)化為由一個三角函數(shù)表達的形式求解。
4、 立足課本、抓好基礎(chǔ)。從前面敘述可知,我們已經(jīng)看到近幾年高考已逐步拋棄了對復(fù)雜三角變換和特殊技巧的考查,而重點轉(zhuǎn)移到對三角函數(shù)的圖象與性質(zhì)的考查,對基礎(chǔ)知識和基本技能的考查上來,所以在中首先要打好基礎(chǔ)。在考查利用三角公式進行恒等變形的同時,也直接考查了三角函數(shù)的性質(zhì)及圖象的變換,可見高考在降低對三角函數(shù)恒等變形的要求下,加強了對三角函數(shù)性質(zhì)和圖象的考查力度。
四、復(fù)習(xí)建議
本章內(nèi)容由于公式多,且習(xí)題變換靈活等特點,建議同學(xué)們復(fù)習(xí)本章時應(yīng)注意以下幾點:
(1)首先對現(xiàn)有公式自己推導(dǎo)一遍,通過公式推導(dǎo)了解它們的內(nèi)在聯(lián)系從而培養(yǎng)邏輯推理。
(2)對公式要抓住其特點進行。有的公式運用一些順口溜進行。
(3)三角函數(shù)是階段研究的一類初等函數(shù)。故對三角函數(shù)的性質(zhì)研究應(yīng)結(jié)合一般函數(shù)研究方法進行對比。如定義域、值域、奇偶性、周期性、圖象變換等。通過與函數(shù)這一章的對比,加深對函數(shù)性質(zhì)的理解。但又要注意其個性特點,如周期性,通過對三角函數(shù)周期性的復(fù)習(xí),類比到一般函數(shù)的周期性,再結(jié)合函數(shù)特點的研究類比到抽象函數(shù),形成解決問題的能力。
(4)由于三角函數(shù)是我們研究的一門基礎(chǔ)工具,近幾年高考往往考查知識網(wǎng)絡(luò)交匯處的知識,故學(xué)習(xí)本章時應(yīng)注意本章知識與其它章節(jié)知識的聯(lián)系。如平面向量、參數(shù)方程、換元法、解三角形等。(2003年高考應(yīng)用題源于此)
(5)重視數(shù)學(xué)思想方法的復(fù)習(xí),如前所述本章都以選擇、填空題形式出現(xiàn),因此復(fù)習(xí)中要重視選擇、填空題的一些特殊解題方法,如數(shù)形結(jié)合法、代入檢驗法、特殊值法,待定系數(shù)法、排除法等。另外對有些具體問題還需要掌握和運用一些基本結(jié)論。如:關(guān)于對稱問題,要利用y=sinx的對稱軸為x=kπ+ (k∈Z),對稱中心為(kπ,0),(k∈Z)等基本結(jié)論解決問題,同時還要注意對稱軸與函數(shù)圖象的交點的縱坐標(biāo)特征。在求三角函數(shù)值的問題中,要學(xué)會用勾股數(shù)解題的方法,因為高題一般不能查表,給出的數(shù)都較特殊,因此主動發(fā)現(xiàn)和運用勾股數(shù)來解題能起到事半功倍的效果。
(6)加強三角函數(shù)應(yīng)用意識的訓(xùn)練,1999年高考理科第20題實質(zhì)是一個三角問題,由于考生對三角函數(shù)的概念認識膚淺,不能將以角為自變量的函數(shù)迅速與三角函數(shù)之間建立聯(lián)系,造成障礙,思路受阻。實際上,三角函數(shù)是以角為自變量的函數(shù),也是以實數(shù)為自變量的函數(shù),它產(chǎn)生于生產(chǎn)實踐,是客觀實際的抽象,同時又廣泛地應(yīng)用于客觀實際,故應(yīng)培養(yǎng)實踐第一的觀點??傊?,三角部分的考查保持了內(nèi)容穩(wěn)定,難度穩(wěn)定,題量穩(wěn)定,題型穩(wěn)定,考查的重點是三角函數(shù)的概念、性質(zhì)和圖象,三角函數(shù)的求值問題以及三角變換的方法。
(7)變?yōu)橹骶€、抓好訓(xùn)練。變是本章的主題,在三角變換考查中,角的變換,三角函數(shù)名的變換,三角函數(shù)次數(shù)的變換,三角函數(shù)式表達形式的變換等比比皆是,在訓(xùn)練中,強化“變”意識是關(guān)鍵,但題目不可太難,較特殊技巧的題目不做,立足課本,掌握課本中常見問題的解法,把課本中習(xí)題進行歸類,并進行分析比較,尋找解題規(guī)律。針對高考中的題目看,還要強化變角訓(xùn)練,經(jīng)常注意收集角間關(guān)系的觀察分析方法。另外如何把一個含有不同名或不同角的三角函數(shù)式化為只含有一個三角函數(shù)關(guān)系式的訓(xùn)練也要加強,這也是高考的重點。同時應(yīng)掌握三角函數(shù)與二次函數(shù)相結(jié)合的題目。
(8)在復(fù)習(xí)中,應(yīng)立足基本公式,在解題時,注意在條件與結(jié)論之間建立聯(lián)系,在變形過程中不斷尋找差異,講究算理,才能立足基礎(chǔ),發(fā)展能力,適應(yīng)高考。
在本章內(nèi)容中,高考試題主要反映在以下三方面:其一是考查三角函數(shù)的性質(zhì)及圖象變換,尤其是三角函數(shù)的最大值與最小值、周期。多數(shù)題型為選擇題或填空題;其次是三角函數(shù)式的恒等變形。如運用三角公式進行化簡、求值解決簡單的綜合題等。除在填空題和選擇題出現(xiàn)外,解答題的中檔題也經(jīng)常出現(xiàn)這方面內(nèi)容。
另外,還要注意利用三角函數(shù)解決一些應(yīng)用問題。
一、說課內(nèi)容:
九年級數(shù)學(xué)下冊第27章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題 (華東師范大學(xué)出版社)
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:抽象出實際問題中的二次函數(shù)關(guān)系。
三、教法學(xué)法設(shè)計:
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,ky=kx ,ky= , k0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k0的條件? k值對函數(shù)性質(zhì)有什么影響?
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€例子中兩個變量之間存在怎樣的關(guān)系。
例1、(1)圓的半徑是r(cm)時,面積s (cm2)與半徑之間的關(guān)系是什么?
解:s=0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m2)與矩形一邊長x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x2+10x (0
例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)2
=100(x2+2x+1)
= 100x2+200x+100(0
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1 (2) s=3-2t2
(3)y=(x+3)2- x2 (4) s=10r2
(5) y=22+2x (6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
(四)鞏固練習(xí)
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;
(2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
五、評價分析
本節(jié)的一個知識點就是二次函數(shù)的概念,教學(xué)中教師不能直接給出,而要讓學(xué)生自己在分析、揭示實際問題的數(shù)量關(guān)系并把實際問題轉(zhuǎn)化為數(shù)學(xué)模型的過程中,使學(xué)生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型,增加對二次函數(shù)的感性認識,側(cè)重點通過兩個實際問題的探究引導(dǎo)學(xué)生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學(xué)在生活中的廣泛應(yīng)用。對于最大面積問題,可給學(xué)生留為課下探究問題,發(fā)展學(xué)生的發(fā)散思維,方法不拘一格,只要合理均應(yīng)鼓勵。
二次函數(shù)的教學(xué)設(shè)計
教學(xué)內(nèi)容:人教版九年義務(wù)教育初中第三冊第108頁
教學(xué)目標(biāo)?:
1.???????? 1.???? 理解二次函數(shù)的意義;會用描點法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2.?????? 2.?????? 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3.?????? 3.?????? 通過二次函數(shù)的教學(xué)讓學(xué)生進一步體會研究函數(shù)的一般方法;加深對于數(shù)形結(jié)合思想認識。
教學(xué)重點:二次函數(shù)的意義;會畫二次函數(shù)圖象。
教學(xué)難點?:描點法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程?設(shè)計:
一.?? 一.?? 創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:
1.寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2.? ①
2.寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2?? ②
分析:①②兩個關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識。(板書課題)
二.?? 二.?? 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0)?? 。
那么,y叫做x的二次函數(shù).
注意:(1)必須a≠0,否則就不是二次函數(shù)了.而b,c兩數(shù)可以是零.(2) 由于二次函數(shù)的解析式是整式的形式,所以x的'取值范圍是任意實數(shù).
練習(xí):1.舉例子:請同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2.出難題:請同學(xué)給大家出示一個函數(shù),請同學(xué)判斷是否是二次函數(shù)。
(若學(xué)生考慮不全,教師給予補充。如:
對照教師畫的圖象一一分析學(xué)生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點注意。
練習(xí):畫出函數(shù)? ?;? 的圖象(請兩個同學(xué)板演)
X
-3
-2
-1
1
2
3
Y=0.5X2
4.5
2
0.5
0.5
02
4.5
Y=-X2
-9
-4
-1
-1
-4
-9
畫好之后教師根據(jù)情況講評,并引導(dǎo)學(xué)生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。
(這里,教師在學(xué)生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學(xué)生學(xué)會畫圖象的方法;并及時安排練習(xí)鞏固剛剛學(xué)到的新知識,通過觀察,感悟拋物線名稱的由來。)
三.?? 三.?? 運用新知、變式探究
畫出函數(shù)? y=5x2圖象
學(xué)生在畫圖象的過程中遇到函數(shù)值較大的困難,不知如何是好。
x
-0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5
Y=5x2
1.25
0.8
0.45
0.2
0.05
0.05
0.2
0.45
0.8
1.25
教師出示已畫好的圖象讓學(xué)生觀察
注意:1. 畫圖象應(yīng)描7個左右的點,描的點越多圖象越準(zhǔn)確。
2. 自變量X的取值應(yīng)注意關(guān)于Y軸對稱。
3. 對于不同的二次函數(shù)自變量X的取值應(yīng)更加靈活,例如可以取分數(shù)。
四.?? 四.?? 歸納小結(jié)、延續(xù)探究
教師引導(dǎo)學(xué)生觀察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見;互相改進,互相完善。最終得到如下性質(zhì):
一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對稱軸是Y軸,頂點是坐標(biāo)原點;當(dāng)a>0時,圖象的開口向上,最低點為(0,0);當(dāng)a<0時,圖象的開口向下,最高點為(0,0)。
五.?? 五.?? 回顧反思、總結(jié)收獲
在這一環(huán)節(jié)中,教師請同學(xué)們回顧一節(jié)課的學(xué)習(xí)暢談自己的收獲或多、或少、或幾點、或全面,總之是人人有所得,個個有提高。這也正是新課標(biāo)中所倡導(dǎo)的新的理念——不同的人在數(shù)學(xué)上得到不同的發(fā)展。
(在整個一節(jié)課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問題,我也鼓勵學(xué)生大膽思考,積極嘗試,不怕困難,一個人完不成,講不透,第二個人、第三個人補充,直到完成整個例題。這樣上課氣氛非常活躍,學(xué)生之間常會因為某個觀點的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時地對某些觀點作出判斷,或與學(xué)生一同討論。)
數(shù)學(xué)教案-二次函數(shù)教學(xué)設(shè)計
二次函數(shù)的圖象和性質(zhì)教學(xué)設(shè)計
教學(xué)目標(biāo):
1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。
2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標(biāo)。
3.讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。
重點難點:
重點:用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標(biāo)是教學(xué)的重點。
難點:理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標(biāo)分別是x=-、(-,)是教學(xué)的難點。
教學(xué)過程:
一、提出問題
1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標(biāo)嗎?
(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標(biāo)是(2,1)。
2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?
(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
3.函數(shù)y=-4(x-2)2+1具有哪些性質(zhì)?
(當(dāng)x<2時,函數(shù)值y隨x的增大而增大,當(dāng)x>2時,函數(shù)值y隨x的增大而減??;當(dāng)x=2時,函數(shù)取得最大值,最大值y=1)
4.不畫出圖象,你能直接說出函數(shù)y=-x2+x-的圖象的開口方向、對稱軸和頂點坐標(biāo)嗎?
[因為y=-x2+x-=-(x-1)2-2,所以這個函數(shù)的圖象開口向下,對稱軸為直線x=1,頂點坐標(biāo)為(1,-2)]
5.你能畫出函數(shù)y=-x2+x-的圖象,并說明這個函數(shù)具有哪些性質(zhì)嗎?
二、解決問題
由以上第4個問題的解決,我們已經(jīng)知道函數(shù)y=-x2+x-的圖象的開口方向、對稱軸和頂點坐標(biāo)。根據(jù)這些特點,可以采用描點法作圖的方法作出函數(shù)y=-x2+x-的圖象,進而觀察得到這個函數(shù)的性質(zhì)。
解:(1)列表:在x的取值范圍內(nèi)列出函數(shù)對應(yīng)值表;
x … -2 -1 0 1 2 3 4 …
y … -6 -4 -2 -2 -2 -4 -6 …
(2)描點:用表格里各組對應(yīng)值作為點的坐標(biāo),在平面直角坐標(biāo)系中描點。
(3)連線:用光滑的曲線順次連接各點,得到函數(shù)y=-x2+x-的圖象,如圖所示。
說明:(1)列表時,應(yīng)根據(jù)對稱軸是x=1,以1為中心,對稱地選取自變量的值,求出相應(yīng)的函數(shù)值。相應(yīng)的函數(shù)值是相等的。
(2)直角坐標(biāo)系中x軸、y軸的長度單位可以任意定,且允許x軸、y軸選取的長度單位不同。所以要根據(jù)具體問題,選取適當(dāng)?shù)拈L度單位,使畫出的.圖象美觀。
讓學(xué)生觀察函數(shù)圖象,發(fā)表意見,互相補充,得到這個函數(shù)韻性質(zhì);
當(dāng)x<1時,函數(shù)值y隨x的增大而增大;當(dāng)x>1時,函數(shù)值y隨x的增大而減?。?/p>
當(dāng)x=1時,函數(shù)取得最大值,最大值y=-2
三、做一做
1.請你按照上面的方法,畫出函數(shù)y=x2-4x+10的圖象,由圖象你能發(fā)現(xiàn)這個函數(shù)具有哪些性質(zhì)嗎?
教學(xué)要點
(1)在學(xué)生畫函數(shù)圖象的同時,教師巡視、指導(dǎo);
(2)叫一位或兩位同學(xué)板演,學(xué)生自糾,教師點評。
2.通過配方變形,說出函數(shù)y=-2x2+8x-8的圖象的開口方向、對稱軸和頂點坐標(biāo),這個函數(shù)有最大值還是最小值?這個值是多少?
教學(xué)要點
(1)在學(xué)生做題時,教師巡視、指導(dǎo);(2)讓學(xué)生總結(jié)配方的方法;(3)讓學(xué)生思考函數(shù)的最大值或最小值與函數(shù)圖象的開口方向有什么關(guān)系?這個值與函數(shù)圖象的頂點坐標(biāo)有什么關(guān)系?
以上講的,都是給出一個具體的二次函數(shù),來研究它的圖象與性質(zhì)。那么,對于任意一個二次函數(shù)y=ax2+bx+c(a≠0),如何確定它的圖象的開口方向、對稱軸和頂點坐標(biāo)?你能把結(jié)果寫出來嗎?
教師組織學(xué)生分組討論,各組選派代表發(fā)言,全班交流,達成共識;
y=ax2+bx+c
=a(x2+x)+c
=a[x2+x+ ()2-()2]+c
=a[x2+x+()2]+c-
=a(x+)2+
當(dāng)a>0時,開口向上,當(dāng)a<0時,開口向下。
對稱軸是x=-b/ 2a ,頂點坐標(biāo)是(-,)
四、課堂練習(xí)
課本練習(xí)第1、2、3題。
五、小結(jié)
通過本節(jié)課的學(xué)習(xí),你學(xué)到了什么知識?有何體會?
剎車距離與二次函數(shù)教學(xué)設(shè)計
學(xué)習(xí)目標(biāo):
1.經(jīng)歷探索二次函數(shù)y=ax2和y=ax2+c的圖象的作法和性質(zhì)的過程,進一步獲得將表格、表達式、圖象三者聯(lián)系起來的經(jīng)驗.
2.會作出y=ax2和y=ax2+c的圖象,并能比較它們與y=x2的異同,理解a與c對二次函數(shù)圖象的影響.
3.能說出y=ax2+c與y=ax2圖象的開口方向、對稱軸和頂點坐標(biāo).
4.體會二次函數(shù)是某些實際問題的數(shù)學(xué)模型.
學(xué)習(xí)重點:
二次函數(shù)y=ax2、y=ax2+c的圖象和性質(zhì),因為它們的圖象和性質(zhì)是研究二次函數(shù)y=ax2+bx+c的圖象和性質(zhì)的基礎(chǔ).我們在學(xué)習(xí)時結(jié)合圖象分別從開口方向、對稱軸、頂點坐標(biāo)、最大(小值)、函數(shù)的增減性幾個方面記憶分析.
學(xué)習(xí)難點:
由函數(shù)圖象概括出y=ax2、y=ax2+c的性質(zhì).函數(shù)圖象都由(1)列表,(2)描點、連線三步完成.我們可根據(jù)函數(shù)圖象來聯(lián)想函數(shù)性質(zhì),由性質(zhì)來分析函數(shù)圖象的形狀和位置.
學(xué)習(xí)方法:
類比學(xué)習(xí)法。
學(xué)習(xí)過程:
一、復(fù)習(xí):
二次函數(shù)y=x2 與y=-x2的'性質(zhì):
拋物線 y=x2 y=-x2
對稱軸
頂點坐標(biāo)
開口方向
位置
增減性
最值
二、問題引入:
你知道兩輛汽車在行駛時為什么要保持一定距離嗎?
剎車距離與什么因素有關(guān)?
有研究表明:汽車在某段公路上行駛時,速度為v(km/h)汽車的剎車距離s(m)可以由公式:
晴天時: ;雨天時: ,請分別畫出這兩個函數(shù)的圖像:
三、動手操作、探究:
1.在同一平面內(nèi)畫出函數(shù)y=2x2與y=2x2+1的圖象。
2.在同一平面內(nèi)畫出函數(shù)y=3x2與y=3x2-1的圖象。
比較它們的性質(zhì),你可以得到什么結(jié)論?
四、例題:
【例1】 已知拋物線y=(m+1)x 開口向下,求m的值.
【例2】k為何值時,y=(k+2)x 是關(guān)于x的二次函數(shù)?
【例3】在同一坐標(biāo)系中,作出函數(shù)①y=-3x2,②y=3x2,③y= x2,④y=- x2的圖象,并根據(jù)圖象回答問題:(1)當(dāng)x=2時,y= x2比y=3x2大(或小)多少?(2)當(dāng)x=-2時,y=- x2比y=-3x2大(或小)多少?
【例4】已知直線y=-2x+3與拋物線y=ax2相交于A、B兩點,且A點坐標(biāo)為(-3,m).
(1)求a、m的值;
(2)求拋物線的表達式及其對稱軸和頂點坐標(biāo);
(3)x取何值時,二次函數(shù)y=ax2中的y隨x的增大而減小;
(4)求A、B兩點及二次函數(shù)y=ax2的頂點構(gòu)成的三角形的面積.
【例5】有一座拋物線形拱橋,正常水位時,橋下水面寬度為20m,拱頂距離水面4m.(1)在如圖所示的直角坐標(biāo)系中,求出該拋物線的表達式;(2)在正常水位的基礎(chǔ)上,當(dāng)水位上升h(m)時,橋下水面的寬度為d(m),求出將d表示為k的函數(shù)表達式;(3)設(shè)正常水位時橋下的水深為2m,為保證過往船只順利航行,橋下水面寬度不得小于18m,求水深超過多少米時就會影響過往船只在橋下的順利航行.
五、課后練習(xí)
1.拋物線y=-4x2-4的開口向 ,當(dāng)x= 時,y有最 值,y= .
2.當(dāng)m= 時,y=(m-1)x -3m是關(guān)于x的二次函數(shù).
3.拋物線y=-3x2上兩點A(x,-27),B(2,y),則x= ,y= .
4.當(dāng)m= 時,拋物線y=(m+1)x +9開口向下,對稱軸是 .在對稱軸左側(cè),y隨x的增大而 ;在對稱軸右側(cè),y隨x的增大而 .
5.拋物線y=3x2與直線y=kx+3的交點為(2,b),則k= ,b= .
6.已知拋物線的頂點在原點,對稱軸為y軸,且經(jīng)過點(-1,-2),則拋物線的表達式為 .
7.在同一坐標(biāo)系中,圖象與y=2x2的圖象關(guān)于x軸對稱的是( )
A.y= x2 B.y=- x2 C.y=-2x2 D.y=-x2
8.拋物線,y=4x2,y=-2x2的圖象,開口最大的是( )
A.y= x2 B.y=4x2 C.y=-2x2 D.無法確定
9.對于拋物線y= x2和y=- x2在同一坐標(biāo)系里的位置,下列說法錯誤的是( )
A.兩條拋物線關(guān)于x軸對稱 B.兩條拋物線關(guān)于原點對稱
C.兩條拋物線關(guān)于y軸對稱 D.兩條拋物線的交點為原點
10.二次函數(shù)y=ax2與一次函數(shù)y=ax+a在同一坐標(biāo)系中的圖象大致為( )
11.已知函數(shù)y=ax2的圖象與直線y=-x+4在第一象限內(nèi)的交點和它與直線y=x在第一象限內(nèi)的交點相同,則a的值為( )
A.4 B.2 C. D.
12.求符合下列條件的拋物線y=ax2的表達式:
(1)y=ax2經(jīng)過(1,2);
(2)y=ax2與y= x2的開口大小相等,開口方向相反;
(3)y=ax2與直線y= x+3交于點(2,m).
13.如圖,直線經(jīng)過A(3,0),B(0,3)兩點,且與二次函數(shù)y=x2+1的圖象,在第一象限內(nèi)相交于點C.求:
(1)△AOC的面積;
(2)二次函數(shù)圖象頂點與點A、B組成的三角形的面積.
14.自由落體運動是由于地球引力的作用造成的,在地球上,物體自由下落的時間t(s)和下落的距離h(m)的關(guān)系是h=4.9t 2.求:
(1)一高空下落的物體下落時間3s時下落的距離;
(2)計算物體下落10m,所需的時間.(精確到0.1s)
15.有一座拋物線型拱橋,橋下面在正常水位AB時寬20m.水位上升3m,就達到警戒線CD,這時,水面寬度為10m.
(1)在如圖2-3-9所示的坐標(biāo)系中求拋物線的表達式;
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到拱橋頂?
一次函數(shù)的圖象教學(xué)設(shè)計
一、教材的地位和作用
本節(jié)課主要是在學(xué)生學(xué)習(xí)了函數(shù)圖象的基礎(chǔ)上,通過動手操作接受一次函數(shù)圖象是直線這一事實,在實踐中體會“兩點法”的簡便,向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想,以使學(xué)生借助直觀的圖形,生動形象的變化來發(fā)現(xiàn)兩個一次函數(shù)圖象在直角坐標(biāo)系中的位置關(guān)系。培養(yǎng)學(xué)生主動學(xué)習(xí)、主動探索、合作學(xué)習(xí)的能力。本節(jié)課為探索一次函數(shù)性質(zhì)作準(zhǔn)備。
(一)教學(xué)目標(biāo)的確定
教學(xué)目標(biāo)是教學(xué)的出發(fā)點和歸宿。因此,我根據(jù)新課標(biāo)的知識、能力和德育目標(biāo)的要求,以學(xué)生的認知點,心理特點和本課的特點來制定教學(xué)目標(biāo)。
1、知識目標(biāo)
(1)能用“兩點法”畫出一次函數(shù)的圖象。
(2)結(jié)合圖象,理解直線y=kx+b(k、b是常數(shù),k≠0)常數(shù)k和b的取值對于直線的位置的影響。
2、能力目標(biāo)
(1)通過操作、觀察,培養(yǎng)學(xué)生動手和歸納的能力。
(2)結(jié)合具體情境向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
3、情感目標(biāo)
(1)通過動手操作,觀察探索一次函數(shù)的特征,體驗數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動中的主動探索的意識和合作交流的習(xí)慣。
(2)讓學(xué)生通過直觀感知、動手操作去經(jīng)歷、體會規(guī)律形成的過程。
(二)教學(xué)重點、難點
用“兩點法”畫出一次函數(shù)的圖象是研究一次函數(shù)的性質(zhì)的基礎(chǔ),是本節(jié)課的重點。直線y=kx+b(k、b是常數(shù),k≠0)常數(shù)k和b的取值對于直線的位置的影響,是本節(jié)課的.難點。關(guān)鍵是通過學(xué)生的直觀感知、動手操作、合作交流歸納其規(guī)律。
二、學(xué)情分析
1、由用描點法畫函數(shù)的圖象的認識,學(xué)生能接受一次函數(shù)的圖象是直線,結(jié)合“兩點確定一條直線”,學(xué)生能畫出一次函數(shù)圖象。
2、根據(jù)學(xué)生抽象歸納能力較差,學(xué)習(xí)直線y=kx+b(k、b是常數(shù),k≠0)常數(shù)k和b的取值對于直線的位置的影響有難度。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出圖象變化特征的探索過程,自主探索出其規(guī)律。
3、抓住初中學(xué)生的心理特征,運用直觀生動的形象,引發(fā)學(xué)生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
三、教學(xué)方法
我采用自主探究—→合作交流式教學(xué),讓學(xué)生動手操作,主動去探索,小組合作交流。而互動式教學(xué)將顧及到全體學(xué)生,讓全體學(xué)生都參與,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果。
四、教學(xué)設(shè)計
一、設(shè)疑,導(dǎo)入新課(2分鐘)
師:同學(xué)們,上節(jié)課我們學(xué)習(xí)了一次函數(shù),你能說一說什么樣的函數(shù)是一次函數(shù)嗎?
生1:函數(shù)的解析式都是用自變量的一次整式表示的,我們稱這樣的函數(shù)為一次函數(shù)。
生2:一次函數(shù)通??梢员硎緸閥=kx+b的形式,其中k、b為常數(shù),k≠0。
生3:正比例函數(shù)也是一次函數(shù)。
師:(同學(xué)們回答的都很好)通過前面的學(xué)習(xí)我們可以發(fā)現(xiàn),一次函數(shù)是一種特殊的函數(shù),那么一次函數(shù)的圖象是什么形狀呢?
這節(jié)課讓我們一起來研究 “一次函數(shù)的圖象”。(板書)
二、自主探究——小組交流、歸納——問題升華:
1、師:問(1)你們知道一次函數(shù)是什么形狀嗎?(4分鐘)
生:不知道。
師:那就讓我們一起做一做,看一看:(出示幻燈片)
用描點法作出下列一次函數(shù)的圖象。
(1) y= 0.5x (2)y= 0.5x+2
(3) y= 3x (4)y= 3x + 2
師:(為了節(jié)約時間)要求:用描點法時,最少5個點;以小組為單位,由小組長分配,每人畫一個圖象。畫完后,小組訂正,看是否畫的正確?
然后討論解決問題(1):觀察你和你的同伴畫出的圖象,你認為一次函數(shù)的圖象是什么形狀?
小組匯報:一次函數(shù)的圖象是直線。
師:所有的一次函數(shù)圖象都是直線嗎?
生:是。
師:那么一次函數(shù)y=kx+b(其中k、b為常數(shù),k≠0),也可以稱為直線y=kx+b(其中k、b為常數(shù),k≠0)。(板書)
師:(出示幻燈片)問(2):觀察你和你的同伴所畫的圖象在位置上有沒有不同之處?(2分鐘)
討論正比例函數(shù)的圖象與一般的一次函數(shù)圖象在位置上有沒有不同之處。
小組1:正比例函數(shù)圖象經(jīng)過原點。
小組2:正比例函數(shù)圖象經(jīng)過原點,一般的一次函數(shù)不經(jīng)過原點。
師出示幻燈片3(使學(xué)生再一次加深印象)
師:問(3):對于畫一次函數(shù)y=kx+b(其中k)b為常數(shù),k≠0)的圖象——直線,你認為有沒有更為簡便的方法?
(一邊思考,可以和同桌交流)(2分鐘)
生1:用3個點。
生2:老師我這個更簡單,用兩個點。因為兩點確定一條直線嘛!
生3:如畫y=0.5x的圖象,經(jīng)過(0,0)點和(2,1)點這兩個點做直線就行。
二次函數(shù)的教學(xué)設(shè)計
教學(xué)內(nèi)容:人教版九年義務(wù)教育初中第三冊第108頁
教學(xué)目標(biāo):
1. 1. 理解二次函數(shù)的意義;會用描點法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2. 2. 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3. 3. 通過二次函數(shù)的教學(xué)讓學(xué)生進一步體會研究函數(shù)的一般方法;加深對于數(shù)形結(jié)合思想認識,數(shù)學(xué)教案-二次函數(shù)教學(xué)設(shè)計。
教學(xué)重點:二次函數(shù)的意義;會畫二次函數(shù)圖象。
教學(xué)難點:描點法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程設(shè)計:
一. 一. 創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:
1.寫出圓的半徑是R(CM),它的.面積S(CM2)與R的關(guān)系式
答:S=πR2. ①
2.寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識。(板書課題)
二. 二. 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) 。
那么,y叫做x的二次函數(shù).
注意:(1)必須a≠0,否則就不是二次函數(shù)了.而b,c兩數(shù)可以是零.(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實數(shù).
練習(xí):1.舉例子:請同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2.出難題:請同學(xué)給大家出示一個函數(shù),請同學(xué)判斷是否是二次函數(shù)。
(若學(xué)生考慮不全,教師給予補充。如:
對照教師畫的圖象一一分析學(xué)生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點注意。
練習(xí):畫出函數(shù) ; 的圖象(請兩個同學(xué)板演)
X
-3
-2
-1
1
2
3
Y=0.5X2
4.5
2
0.5
0.5
02
4.5
Y=-X2
-9
-4
-1
-1
-4
-9
畫好之后教師根據(jù)情況講評,并引導(dǎo)學(xué)生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。
(這里,教師在學(xué)生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學(xué)生學(xué)會畫圖象的方法;并及時安排練習(xí)鞏固剛剛學(xué)到的新知識,通過觀察,感悟拋物線名稱的由來。)
三. 三. 運用新知、變式探究
畫出函數(shù) y=5x2圖象
學(xué)生在畫圖象的過程中遇到函數(shù)值較大的困難,不知如何是好。
x
-0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5
Y=5x2
1.25
0.8
0.45
0.2
0.05
0.05
0.2
0.45
0.8
1.25
教師出示已畫好的圖象讓學(xué)生觀察
注意:1. 畫圖象應(yīng)描7個左右的點,描的點越多圖象越準(zhǔn)確,初中數(shù)學(xué)教案《數(shù)學(xué)教案-二次函數(shù)教學(xué)設(shè)計》。
2. 自變量X的取值應(yīng)注意關(guān)于Y軸對稱。
3. 對于不同的二次函數(shù)自變量X的取值應(yīng)更加靈活,例如可以取分數(shù)。
四. 四. 歸納小結(jié)、延續(xù)探究
教師引導(dǎo)學(xué)生觀察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見;互相改進,互相完善。最終得到如下性質(zhì):
一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對稱軸是Y軸,頂點是坐標(biāo)原點;當(dāng)a>0時,圖象的開口向上,最低點為(0,0);當(dāng)a<0時,圖象的開口向下,最高點為(0,0)。
五. 五. 回顧反思、總結(jié)收獲
在這一環(huán)節(jié)中,教師請同學(xué)們回顧一節(jié)課的學(xué)習(xí)暢談自己的收獲或多、或少、或幾點、或全面,總之是人人有所得,個個有提高。這也正是新課標(biāo)中所倡導(dǎo)的新的理念——不同的人在數(shù)學(xué)上得到不同的發(fā)展。
(在整個一節(jié)課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問題,我也鼓勵學(xué)生大膽思考,積極嘗試,不怕困難,一個人完不成,講不透,第二個人、第三個人補充,直到完成整個例題。這樣上課氣氛非?;钴S,學(xué)生之間常會因為某個觀點的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時地對某些觀點作出判斷,或與學(xué)生一同討論。)
反比例函數(shù)的教學(xué)設(shè)計
知識技能目標(biāo)
1.理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質(zhì);
2.利用反比例函數(shù)的圖象解決有關(guān)問題.
過程性目標(biāo)
1.經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);
2.探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學(xué)問題.
教學(xué)過程
一、創(chuàng)設(shè)情境
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線.那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì).
二、探究歸納
1.畫出函數(shù)的圖象.
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0.
解1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應(yīng)值:
2.描點:用表里各組對應(yīng)值作為點的坐標(biāo),在直角坐標(biāo)系中描出在京各點點(-6,-1)、(-3,-2)、(-2,-3)等.
3.連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支.這兩個分支合起來,就是反比例函數(shù)的圖象.
上述圖象,通常稱為雙曲線(hyperbola).
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟).
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題.
1.這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2.反比例函數(shù)(k≠0)的圖象在哪兩個象限內(nèi)?由什么確定?
3.聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加.
注1.雙曲線的兩個分支與x軸和y軸沒有交點;
2.雙曲線的兩個分支關(guān)于原點成中心對稱.
以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少.
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小.
三、實踐應(yīng)用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值.
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值.
解由題意,得解得.
例2已知反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限.
分析由于反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx-k中,k<0,可知,圖象過二、四象限,又-k>0,所以直線與y軸的交點在x軸的上方.
解因為反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限.
例3已知反比例函數(shù)的圖象過點(1,-2).
(1)求這個函數(shù)的解析式,并畫出圖象;
(2)若點A(-5,m)在圖象上,則點A關(guān)于兩坐標(biāo)軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(1,-2),即當(dāng)x=1時,y=-2.由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;
(2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關(guān)于兩坐標(biāo)軸和原點的對稱點是否在圖象上.
解(1)設(shè):反比例函數(shù)的解析式為:(k≠0).
而反比例函數(shù)的圖象過點(1,-2),即當(dāng)x=1時,y=-2.
所以,k=-2.
即反比例函數(shù)的解析式為:.
(2)點A(-5,m)在反比例函數(shù)圖象上,所以。
點A的坐標(biāo)為.
點A關(guān)于x軸的對稱點不在這個圖象上;
點A關(guān)于y軸的對稱點不在這個圖象上;
點A關(guān)于原點的`對稱點在這個圖象上;
例4已知函數(shù)為反比例函數(shù).
(1)求m的值;
(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
(3)當(dāng)-3≤x≤時,求此函數(shù)的最大值和最小值.
解(1)由反比例函數(shù)的定義可知:解得,m=-2.
(2)因為-2<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大.
(3)因為在第個象限內(nèi),y隨x的增大而增大。
所以當(dāng)x=時,y最大值=;
當(dāng)x=-3時,y最小值=.
所以當(dāng)-3≤x≤時,此函數(shù)的最大值為8,最小值為.
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.
(1)寫出用高表示長的函數(shù)關(guān)系式;
(2)寫出自變量x的取值范圍;
(3)畫出函數(shù)的圖象.
解(1)因為100=5xy,所以.
(2)x>0.
(3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支.
四、交流反思
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì).
1.反比例函數(shù)的圖象是雙曲線(hyperbola).
2.反比例函數(shù)有如下性質(zhì):
(1)當(dāng)k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加.
五、檢測反饋
1.在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
(1);(2).
2.已知y是x的反比例函數(shù),且當(dāng)x=3時,y=8,求:
(1)y和x的函數(shù)關(guān)系式;
(2)當(dāng)時,y的值;
(3)當(dāng)x取何值時,?
3.若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值.
4.已知反比例函數(shù)經(jīng)過點A(2,-m)和B(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0函數(shù)教學(xué)設(shè)計(15)
《函數(shù)的單調(diào)性》教學(xué)設(shè)計范文
作為一名人民教師,就不得不需要編寫教學(xué)設(shè)計,借助教學(xué)設(shè)計可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。我們該怎么去寫教學(xué)設(shè)計呢?下面是小編精心整理的《函數(shù)的單調(diào)性》教學(xué)設(shè)計范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
一、教材分析
本節(jié)內(nèi)容是北師大版數(shù)學(xué)必修1第二章第3節(jié)函數(shù)的單調(diào)性,兩課時內(nèi)容,本節(jié)是第一課時。函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì),學(xué)生在初中階段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對函數(shù)的增減性有了一個初步的感性認識。
高中階段,進一步用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維。從知識的結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又為后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的學(xué)習(xí)作準(zhǔn)備,也為利用導(dǎo)數(shù)研究單調(diào)性的相關(guān)知識奠定了基礎(chǔ)。
在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問題中都有著廣泛的應(yīng)用。函數(shù)單調(diào)性概念的建立過程中蘊涵諸多數(shù)學(xué)思想方法,對于進一步探索、研究函數(shù)的其他性質(zhì)有很強的啟發(fā)與示范作用。
二、學(xué)情分析
在初中階段通過對一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對函數(shù)的增減性有了初步的感性認識,同時經(jīng)過初中的學(xué)習(xí)學(xué)生已具備了一定的觀察、發(fā)現(xiàn)、分析、抽象、概括能力,為函數(shù)單調(diào)性的學(xué)習(xí)做好了準(zhǔn)備,但是把具體的、直觀形象的函數(shù)單調(diào)性的特征用數(shù)學(xué)符號語言進行定量刻畫對高一的學(xué)生來說比較困難,同時單調(diào)性的證明又是學(xué)生在函數(shù)學(xué)習(xí)中首次接觸到的代數(shù)論證內(nèi)容,剛上高一的學(xué)生在代數(shù)方面的推理論證能力是比較薄弱的'。
三、教學(xué)目標(biāo)
1、知識與技能:
(1)使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念;
(2)初步掌握利用函數(shù)圖象和定義判斷、證明函數(shù)單調(diào)性的方法步驟。
2、過程與方法:
(1)通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達能力;
(2)通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力。
3、情感、態(tài)度與價值觀:
通過知識的探究過程培養(yǎng)學(xué)生細心觀察、認真分析、嚴(yán)謹論證的良好思維習(xí)慣,讓學(xué)生感知從具體到抽象,從特殊到一般,從感性到理性的認知過程,體會數(shù)形結(jié)合的思想。
四、教學(xué)重點、難點
重點:函數(shù)單調(diào)性的概念;判斷及證明。
難點:函數(shù)單調(diào)性概念(數(shù)學(xué)符號語言)的認知,應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。
五、教學(xué)、學(xué)法分析
通過對一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對函數(shù)的增減性有了初步的感性認識,因此探究時先以基本初等函數(shù)為載體,針對它們的圖像,依據(jù)循序漸進原則,設(shè)計幾個問題,通過引導(dǎo)學(xué)生多思,多說多練,學(xué)生回答的同時教師利用多媒體展示,使認識得到深化。在整個教學(xué)過程中主要采取教師啟發(fā)講授,學(xué)生探究學(xué)習(xí)的教學(xué)方法。
六、教學(xué)過程
(一)創(chuàng)設(shè)問題情境引入課題
給出德國著名心理學(xué)家艾賓浩斯描繪的著名的“艾賓浩斯遺忘曲線”。
思考:隨著時間t的變化,記憶量y如何變化?這條曲線告訴了你遺忘有什么規(guī)律,你打算如何對待剛學(xué)過的知識?
學(xué)生回答,教師補充?!鞍e浩斯遺忘曲線”從左向右看圖像是下降的,對此如何從數(shù)學(xué)的觀點進行解釋呢?這種以函數(shù)圖像的上升或下降為標(biāo)準(zhǔn)對函數(shù)進行研究,這就是我們這一節(jié)課要學(xué)習(xí)的“函數(shù)的單調(diào)性”。
設(shè)計意圖:利用“艾賓浩斯遺忘曲線”引入新課,可以激發(fā)學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,引發(fā)學(xué)生探求數(shù)學(xué)知識的欲望。
展示目標(biāo):
教師向?qū)W生展示本節(jié)課的學(xué)習(xí)目標(biāo)及教學(xué)重點和教學(xué)難點。
設(shè)計意圖:讓學(xué)生明確本節(jié)課要學(xué)習(xí)的內(nèi)容。
(二)新知探究
1、感性認識函數(shù)單調(diào)性
問題1、做出下列函數(shù)的圖象。
設(shè)計意圖:檢查學(xué)生掌握基本初等函數(shù)圖像的情況。(分組完成不同的任務(wù),及時發(fā)現(xiàn)存在問題,教師進行點評。)
問題2、觀察函數(shù)圖象哪部分是上升的,哪部分是下降的?(從左到右)
(1)函數(shù):在整個定義域內(nèi)上升。
(2)函數(shù):在整個定義域內(nèi)上升。
(3)函數(shù):在______上升,在上下降。
(4)函數(shù):在______上升,在上下降。
對于引導(dǎo)學(xué)生進行分類描述,為后面說明函數(shù)的單調(diào)性是在定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì)埋下伏筆。
問題3、怎樣用自變量,函數(shù)值來描述這種上升和下降?
上升:某個區(qū)間上隨自變量x的增大,也越來越大。
下降:隨自變量的增大,越來越小。
問題4、你能根據(jù)自己的理解說說什么是增加的、減少的嗎?
如果函數(shù)在某個區(qū)間上隨自變量的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增加的;如果函數(shù)在某個區(qū)間上隨自變量的增大,y越來越小,我們說函數(shù)在該區(qū)間上為減少的。
設(shè)計意圖:
(1)合理設(shè)置層次,為揭示函數(shù)單調(diào)性做好鋪墊。
(2)函數(shù)單調(diào)性實質(zhì)上揭示了在定義域的某個子集(或某一區(qū)間)上,函數(shù)值隨自變量的變化而變化,描述函數(shù)圖像在這個子集(或這一區(qū)間)的升降趨勢,有利于多角度、深層次揭示這一概念的本質(zhì)特征,幫助學(xué)生體會運用動態(tài)觀點判斷函數(shù)的單調(diào)性,培養(yǎng)學(xué)生形象思維。
2、理性認識函數(shù)單調(diào)性
問題5、如何用數(shù)學(xué)語言表達函數(shù)值的增減變化呢?
學(xué)生回答,教師根據(jù)實際回答情況引導(dǎo)學(xué)生得到函數(shù)單調(diào)性的數(shù)學(xué)表達式。
(1) 在給定區(qū)間內(nèi)取兩個數(shù),例如1和2。
(2) 仿(1),取多組數(shù)值驗證均滿足,所以在為增加的。
(3) 任取,因為,即,所以在上為增加的。
對于學(xué)生錯誤的回答,引導(dǎo)學(xué)生分別用圖形語言和文字語言進行辨析,使學(xué)生認識到問題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個自變量。
設(shè)計意圖:對二次函數(shù)的單調(diào)性認識由感性上升到理性認識的高度,逐步提升學(xué)生的思維高度,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊,突破難點,同時培養(yǎng)學(xué)生的數(shù)學(xué)表達能力。
這是本節(jié)課的難點,為了分解難度老師啟發(fā)引導(dǎo)學(xué)生,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類比得出減函數(shù)的定義。
一般地,設(shè)函數(shù)的定義域為A,區(qū)間IA:______如果對于區(qū)間I內(nèi)的任意兩個變量,當(dāng)時都有______,那么就說在這個區(qū)間上是增加的。
課后作業(yè)
1、必做題:習(xí)題2—3A組第2題:(2),(3)、第4,5題。
2、選作題:習(xí)題2—3 B組第2題。
設(shè)計意圖:不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,每個學(xué)生都能夠獲得這些數(shù)學(xué),有專長的,可以進一步發(fā)展、因此設(shè)計了不同程度要求的題目。
《二次函數(shù)習(xí)題課》教學(xué)設(shè)計
作為一名教職工,就有可能用到教學(xué)設(shè)計,借助教學(xué)設(shè)計可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。一份好的教學(xué)設(shè)計是什么樣子的呢?下面是小編精心整理的《二次函數(shù)習(xí)題課》教學(xué)設(shè)計,歡迎大家借鑒與參考,希望對大家有所幫助。
設(shè)計思路
由于每個學(xué)生的基礎(chǔ)知識、智力水平和學(xué)習(xí)方法等都存在一定差別,所以本節(jié)課采用分層教學(xué)。既創(chuàng)設(shè)舞臺讓優(yōu)秀生表演,又要重視給后進生提供參與的機會,使其增強學(xué)習(xí)數(shù)學(xué)的信心。具體題目安排從易到難,形成梯度,符合學(xué)生的認知規(guī)律,使全體學(xué)生都能得到不同程度的提高。
教學(xué)目標(biāo)
1.掌握二次函數(shù)的圖像和性質(zhì),了解一元二次方程與二次函數(shù)的關(guān)系,能依據(jù)已知條件確定二次函數(shù)的關(guān)系式。
2.通過研究生活中實際問題,讓學(xué)生體會建立數(shù)學(xué)建模的思想.通過學(xué)習(xí)和探究xxxx考點問題,滲透數(shù)形結(jié)合思想及分類討論思想。
3.查漏補缺,采用小組學(xué)習(xí)使復(fù)習(xí)更有效,學(xué)生在自主探索與合作交流的過程中,全方位“參與”問題的解決,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。
重點
探究利用二次函數(shù)的最大值(或最小值)解決實際問題的方法。
難點
如何將實際問題轉(zhuǎn)化為二次函數(shù)的問題。
教學(xué)過程
[活動1]學(xué)生分組處理前置性作業(yè)
教師出示習(xí)題答案。組織學(xué)生合作交流,深入到每個小組,針對不同情況加強指導(dǎo)。
教師重點關(guān)注學(xué)困生。
針對學(xué)生的實際情況,對習(xí)題進行分層處理,樹立學(xué)困生學(xué)習(xí)數(shù)學(xué)的信心。
[活動2]師生共同解決作業(yè)中存在的問題
學(xué)生自主研究,分組討論后,然后提出問題,教師對學(xué)生回答的問題進行評價
教師重點歸納數(shù)學(xué)思想。
通過對習(xí)題的處理,使學(xué)生進一步加深對二次函數(shù)有關(guān)概念及性質(zhì)的理解,能用函數(shù)觀點解決實際問題。同時,小組學(xué)習(xí)也使學(xué)生全方位參與問題的解決。
[活動3]習(xí)題現(xiàn)中考
例1(xxxx,南寧)
教師結(jié)合教材對比、分析
學(xué)生小組合作,完成例題
教師歸納:本題考查了二次函數(shù)、一元二次方程與梯形的面積等知識。
對于二次函數(shù)與其他知識的綜合應(yīng)用,關(guān)鍵要讓學(xué)生掌握解題思路,把握題型,能利用數(shù)形結(jié)合思想進行分析,從而把握解題的突破口。
[活動4]例題現(xiàn)中考
例2(xxxx,濟寧)
例3(xxxx,黔東南州)
學(xué)生自學(xué),教師指導(dǎo),讓學(xué)生討論回答這兩道題的.共同特點。
讓學(xué)生根據(jù)討論的結(jié)果概括、歸納出“每每型”二次函數(shù)模型的題型特點和解決這類問題的關(guān)鍵。
[活動5]知識提高階段
教師給出一組習(xí)題,學(xué)生討論完成。
知識再運用有助于知識的鞏固。
[活動6]小結(jié)、布置作業(yè)
問題
本節(jié)學(xué)了哪些內(nèi)容?你認為最重要的內(nèi)容是什么?
布置作業(yè)
把錯題整理到作業(yè)本上。
師生共同小結(jié),加深對本節(jié)課知識的理解。
讓學(xué)生參與小結(jié)并有不同的答案,可以增強學(xué)生學(xué)習(xí)的積極性和主動性,培養(yǎng)學(xué)生對所學(xué)知識回顧思考的習(xí)慣。
【微語】能帶來更好結(jié)果的語言:你的想法如何?