培訓啦 考試資料 > 說課稿

二元一次方程說課稿(匯總5篇)

教培參考

教育培訓行業(yè)知識型媒體

發(fā)布時間: 2024-08-12 11:03:58

二元一次方程說課稿(1)

初中數學二元一次方程與一次函數說課稿

一、教材分析

1、教材的地位和作用

函數、方程和不等式都是人們刻畫現實世界的重要數學模型。用函數的觀點看方程(組)與不等式,使學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數的角度將三者統(tǒng)一起來,感受數學的統(tǒng)一美。本節(jié)課是學生學習完一次函數、一元一次方程及一元一次不等式的聯系后對一次函數和二元一次方程(組)關系的探究,學生在探索過程中體驗數形結合的思想方法和數學模型的應用價值,這對今后的學習有著十分重要的意義。

2、教學重難點

重點:一次函數與二元一次方程(組)關系的探索。

難點:綜合運用方程(組)、不等式和函數的知識解決實際問題。

3、教學目標

知識技能:理解一次函數與二元一次方程(組)的關系,會用圖象法解二元一次方程組。

數學思考:經歷一次函數與二元一次方程(組)關系的探索及相關實際問題的解決過程,學會用函數的觀點去認識問題。

解決問題:能綜合應用一次函數、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題。

情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹的科學態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信心。

二、教法說明

對于認知主體——學生來說,他們已經具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學生更好地構建新的認知結構,促進學生的發(fā)展,我將在教學中采用探究式教學法。以學生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快地學習。

三、教學過程

(一)感知身邊數學

多媒體播放一段發(fā)生在電信公司里的情景:一顧客準備辦理上網業(yè)務,發(fā)現有兩種收費方式:方式A以每分鐘0.1元的價格按上網時間計費;方式B除收月基費20元外再以每分鐘0.05元的價格按上網時間計費。顧客說他每月上網的費用按這兩種收費方式計算都是一樣多。求這位顧客打算每月上網多長時間?多少費用?

學生已經學習過列方程(組)解應用題,因此可能列出一元一次方程 或二元一次方程組,用方程模型解決問題。結合前面對一次函數與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:“一次函數與二元一次方程組之間是否也有聯系呢?”,從而揭示課題。

[設計意圖]建構主義認為,在實際情境中學習可以激發(fā)學生的學習興趣。因此,用“上網收費”這一生活實際創(chuàng)設情境,并用問題啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的情勢,從而喚起學生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。

(二)享受探究樂趣

1、探究一次函數與二元一次方程的關系

填空:二元一次方程 可以轉化為 ________。

思考:(1)直線 上任意一點 一定是方程 的解嗎?(2)是否任意的二元一次方程都可以轉化為這種一次函數的形式?

(3)是否直線上任意一點的'坐標都是它所對應的二元一次方程的解?

[設計意圖]用一連串的問題引導學生發(fā)現一次函數與二元一次方程在數與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。

2、探究一次函數與二元一次方程組的關系

(1)在同一坐標系中畫出一次函數 和 的圖象,觀察兩直線的交點坐標是否是方程組 的解?并探索:是否任意兩個一次函數的交點坐標都是它們所對應的二元一次方程組的解?

此時教師留給學生充分探索交流的時間與空間,對學生可能出現的疑問給予幫助,師生共同歸納出:從“形”的角度看,解方程組相當于確定兩條直線交點的坐標。

(2)當自變量 取何值時,函數 與 的值相等?這個函數值是什么?這一問題與解方程組 是同一問題嗎?

進一步歸納出:從“數”的角度看,解方程組相當于考慮自變量為何值時兩個函數的值相等,以及這個函數值是何值。

[設計意圖] 學生經過自主探索、合作交流,從數和形兩個角度認識一次函數與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現知識的形成過程,避免單純地記憶,使學習過程成為一種再創(chuàng)造的過程。此時教師及時對學生進行鼓勵,充分肯定學生的探究成果,關注學生的情感體驗。

(三)乘坐智慧快車

例題:我市一家電信公司給顧客提供兩種上網收費方式:方式A以每分0.1元的價格按上網時間計費;方式B除收月基費20元外再以每分0 .05元的價格按上網時間計費。如何選擇收費方式能使上網者更合算?

解法1:設上網時間為 分,若按方式A則收 元;若按方式B則收 元。然后在同一坐標系中分別畫出這兩個函數的圖象,計算出交點坐標 ,結合圖象,利用直線上點位置的高低直觀地比較函數值的大小,得到當一個月內上網時間少于400分時,選擇方式A省錢;當上網時間等于400分時,選擇方式A、B沒有區(qū)別;當上網時間多于400分時,選擇方式B省錢。

解法2:設上網時間為 分,方式B與方式A兩種計費的差額為 元,得到一次函數: ,即 ,然后畫出函數的圖象,計算出直線與 軸的交點坐標,類似地用點位置的高低直觀地找到答案。

注意:所畫的函數圖象都是射線。

[設計意圖]為培養(yǎng)學生的發(fā)散思維和規(guī)范解題的習慣,引導學生將上網問題延伸為例題,并用問題:“你家選擇的上網收費方式好嗎?”再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。通過此問題的探究,使學生有效地理解本節(jié)課的難點,體會數形結合這一思想方法的應用。

(四)體驗成功喜悅

1、搶答題

(1)、以方程 的解為坐標的所有點都在一次函數 _____的圖象上。

(2)、方程組 的解是________,由此可知,一次函數 與 的圖象必有一個交點,且交點坐標是________。

2、旅游問題

古城荊州歷史悠久,文化燦爛。今年,大型歷史劇《萬歷首輔張居正》在荊州封鏡后,來荊州的游客更是絡繹不絕。據悉,張居正紀念館門票標價20元/張,近期正在進行優(yōu)惠活動,購買時有兩種方式:方式A是團隊中每位游客按8折購買;方式B是團隊中除5張按標價購買外,其余按7折購買。如果你是團隊的負責人,你會如何選擇購買方式使整個團隊更合算?

[設計意圖]抓住學生對競爭充滿興趣的心理特征,用搶答題使學生的眼、耳、腦、口得到充分的調動,并在搶答中品味成功的快樂,提高思維的速度。在學生感興趣的旅游問題中,進一步培養(yǎng)學生應用數學的意識,更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。

(五)分享你我收獲

在課堂臨近尾聲時,向學生提出:通過今天的學習,你有什么收獲?你印象最深的是什么?

[設計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。

(六)開拓嶄新天地

1、數學日記

姓 名 ? ? ? ?日 期

二元一次方程說課稿(2)

一次函數與二元一次方程說課稿

一、教材分析

(一)教材的地位和作用

函數、方程和不等式都是人們刻畫現實世界的重要數學模型。用函數的觀點看方程(組)與不等式,學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數的角度將三者統(tǒng)一起來,感受數學的統(tǒng)一美,學生在探索過程中體驗到的數形結合以及數學建模思想,既是對前面所學知識的升華,同時也對今后學習高中的解析幾何有著十分重要的意義。

(二)教學目標

新一輪的課程改革,旨在促進學生全面、持續(xù)、和諧的發(fā)展,我認為本節(jié)課的教學應達到以下目標:知識技能方面:理解一次函數與二元一次方程組的關系,會用圖象法解二元一次方程組;

數學思考方面:經歷一次函數與二元一次方程(組)關系的探索及相關實際問題的解決過程,學會用函數的觀點去思考問題;

解決問題方面:能綜合應用一次函數、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題;

情感態(tài)度方面:在探究活動中培養(yǎng)學生嚴謹的科學態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信。

(三)教學重、難點

從以上目標可以看出,學生既要通過對一次函數與二元一次方程(組)關系的探究,習得知識、培養(yǎng)能力,又要用此關系解決相關實際問題,因此,本節(jié)課的教學重點應是一次函數與二元一次方程(組)關系的探索。考慮到八年級學生的數學應用意識不強,本節(jié)課的難點應是綜合運用方程(組)、不等式和函數的知識解決相關實際問題。而關鍵則是通過問題情境的設計,激發(fā)學生的求知欲,引導學生探索、交流,引導學生發(fā)現、分析、解決問題。

二、教法分析

《數學課程標準》明確指出“數學教學是數學活動的教學”,“學生是數學學習的主人”。教師的職責在于向學生提供從事數學活動的機會,在活動中激發(fā)學生的學習潛能,引導學生自由探索、合作交流與實踐創(chuàng)新。對于認知主體來說,八年級學生樂于探索,富于幻想,但他們的數學推理能力以及對知識的主動遷移能力較弱,為幫助學生更好地構建新的認知結構,促進學生的主動發(fā)展,本節(jié)課我采用情境—探究式教學法,以“情境――問題――探究――交流――應用――反思――提高” 的模式展開,以學生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快學習。

三、過程分析

本著重實際、重探究、重過程、重交流的教學宗旨,我將本節(jié)課的教學設計成以下六個環(huán)節(jié):情景導入——探究合作——解決問題——鞏固提高——歸納小結——布置作業(yè)。

這節(jié)課,我首先用貼近學生實際、學生感興趣的問題——上網交費問題引導學生進入本節(jié)課的學習,充分調動學生的積極性。課件展示學生回答的用列方程組解答的過程,并提出問題:“同學們在解這個二元一次方程組時,基本上都是用的代入法或加減法,那么解二元一次方程組還有其它的方法嗎?”學生討論后可能會感到束手無策,感到原有的知識不夠用了。一石激起千層浪,問題提出來后,如何解決呢?此時,作為教師,應把握好組織者、引導者和合作者的身份,不要急于發(fā)表自己的意見,而應啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的態(tài)勢,從而喚起學生強烈的學習熱情,使他們主動積極地投入到探索活動中來。另外,此問題的設置也為后面例題的講解作好鋪墊,有利于教學難點的突破。

為使學生更好地掌握本節(jié)課的重點知識,我遵循從特殊到一般,再從一般到特殊的認知規(guī)律,設計了以下問題“你們能否將方程

轉化為一次函數的形式呢?”“如果能,你們能在平面直角坐標系中能畫出它的圖象嗎?”在學生將方程轉化為一次函數的形式并畫出圖象后,我引導學生觀察直線上的幾個點,發(fā)現它們的坐標都是方程

的解,緊接著問“直線上任意一點的坐標一定是方程的解嗎?”“是否任意的二元一次方程都可以轉化為一次函數的形式呢?”“是否所有直線上任意一點的坐標都是它所對應的二元一次方程的解呢?”學生先獨立思考,然后小組討論,不難發(fā)現:每個二元一次方程都對應一個一次函數,于是也就對應一條直線。一連串的問題由淺入深,環(huán)環(huán)相扣,引導學生發(fā)現一次函數與二元一次方程在數與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。

緊接著問學生:“你能用剛才的方法研究另一個方程2x—y=1嗎?”學生在同一坐標系中畫出一次函數y=2x—1的圖象后,發(fā)現兩條直線有一個交點,我又問“這個交點坐標與這兩條直線所對應的方程的解有什么關系?與這兩個方程組成的方程組的解又有什么關系?”此時,學生慢慢體會到:既然每個二元一次方程都對應一條直線,二元一次方程的每一個解又對應直線上的每一個點,那么兩個二元一次方程的公共解就對應著兩條直線的公共點,也就是說,二元一次方程組的解不就是對應著兩條直線的交點嗎?這個時期,教師應留給學生充分探索交流的時間與空間,對學生可能出現的疑問給予及時幫助,師生共同歸納出:用畫圖象的方法可以解二元一次方程組,從而解決了本節(jié)課開頭所提出的問題。然后共同歸納:從“形”的角度看,解方程組相當于確定兩條直線交點的坐標。這告訴我們,既可用畫圖象的`方法可以解二元一次方程組,也可用解方程組的方法求兩條直線交點的坐標。利用剛才已有的探究經驗,學生很容易想到此問題的探究還可以從數的角度看,進一步歸納出:從“數”的角度看,解方程組相當于考慮自變量為何值時兩個函數的值相等,這個函數值是何值。

這樣,學生經過自主探索、合作交流,從數和形兩個角度認識了一次函數與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,并使學習過程成為一種再創(chuàng)造的過程。學生從一個個小問題的回答,到最后的歸納,充分享受學習、探究帶來的快樂,此時教師應充分肯定學生的探究成果,及時對學生進行鼓勵,關注學生的情感體驗。

為滿足學生學以致用、爭強好勝的心理需求,我特意設計了兩個搶答題,既加強了對所學知識的消化理解,又調動了學生的積極性,更讓他們在搶答中品味到了成功的快樂。趁著學生高漲的情緒,我迅速引入開頭部分意猶未盡的上網收費問題,加以變式,再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。經過一番探索,學生可能想到:要選擇合理的收費方式就需要對它們所收費用的大小進行比較,因此一定會有學生用過去的知識——方程或不等式解決問題,對于這部分學生的想法要給予充分的肯定表揚,然后繼續(xù)提問“你能用今天所學的圖象法來解決這個問題嗎?”引導學生建立函數模型進行探索。

學生在同一坐標系中分別畫出兩個一次函數的圖象后,我引導學生觀察圖象的特征,學生討論后發(fā)現當0 ≤ x < 400時,紅色點在藍色點的上方;當x=400時,紅色點與藍色點重合;當x>400時,紅色點在藍色點的下方,這樣利用直線上點位置的高低直觀地比較函數值的大小,從而找到答案。為避免圖象法作圖誤差造成的不足,可引導學生通過代數計算求出交點坐標。為培養(yǎng)學生一題多解的能力,我啟發(fā)學生用作差法,類似地用點位置的高低直觀地找到y(tǒng)>0,y=0 及y<0 時所對應的x的范圍,進而得到答案。通過對實際問題的探究,學生可以發(fā)現圖象法的直觀性,體會數形結合這一思想方法的應用,并學會用函數的觀點,動態(tài)地分析不等式和方程(組)。

為了鞏固學生的學習成果,我把剛剛結束不久的鐵山礦冶文化旅游節(jié)帶進課堂,讓學生欣賞一組美麗的黃石礦冶文化景點圖片,在學生體驗家鄉(xiāng)美好的輕松愉快氛圍中,我再一次出示了一個與之有關的旅游購票問題,并鼓勵學生用不同的方法進行解答,進一步培養(yǎng)學生應用數學的意識,從而更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。

在課堂臨近尾聲時,引導學生對本節(jié)課所學進行小結,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。嘗試開放式課堂教學,以真正體現學生的主體地位,使課堂活動民主化,多樣化。

本節(jié)課的作業(yè)由必做題和選做題組成,體現分層教學,讓不同的學生在數學上得到不同的發(fā)展。

四、設計說明

這節(jié)課,我始終貫穿以學生為主體的原則,突出數形結合的思想,體現數學建模的價值,滲透應用數學的意識,關注學生個性的發(fā)展,讓每一個學生在課堂上都有所感悟,都有著各自的數學體驗,不同的學生在數學的各個不同方面上都得到不同的發(fā)展。

二元一次方程說課稿(3)

《一次函數與二元一次方程(組)》說課稿及教案設計

一、教材分析

1、教材的地位和作用

函數、方程和不等式都是人們刻畫現實世界的重要數學模型。用函數的觀點看方程(組)與不等式,使學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數的角度將三者統(tǒng)一起來,感受數學的統(tǒng)一美。本節(jié)課是學生學習完一次函數、一元一次方程及一元一次不等式的聯系后對一次函數和二元一次方程(組)關系的探究,學生在探索過程中體驗數形結合的思想方法和數學模型的應用價值,這對今后的學習有著十分重要的意義。

2、教學重難點

重點:一次函數與二元一次方程(組)關系的探索。

難點:綜合運用方程(組)、不等式和函數的知識解決實際問題。

3、教學目標

知識技能:理解一次函數與二元一次方程(組)的關系,會用圖象法解二元一次方程組。

數學思考:經歷一次函數與二元一次方程(組)關系的探索及相關實際問題的解決過程,學會用函數的觀點去認識問題。

解決問題:能綜合應用一次函數、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題。

情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹的科學態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信心。

二、教法說明

對于認知主體學生來說,他們已經具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學生更好地構建新的認知結構,促進學生的發(fā)展,我將在教學中采用探究式教學法。以學生為中心,使其在生動活潑、民主開放、主動探索的氛圍中愉快地學習。

三、教學過程

(一)感知身邊數學

學生已經學習過列方程(組)解應用題,因此可能列出一元一次方程 或二元一次方程組,用方程模型解決問題。結合前面對一次函數與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:一次函數與二元一次方程組之間是否也有聯系呢?,從而揭示課題。

[設計意圖]建構主義認為,在實際情境中學習可以激發(fā)學生的學習興趣。因此,用上網收費這一生活實際創(chuàng)設情境,并用問題啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成心求通而未能得,口欲言而不能說的情勢,從而喚起學生強烈的求知欲,使他們以躍躍欲試的`姿態(tài)投入到探索活動中來。

(二)享受探究樂趣

1、探究一次函數與二元一次方程的關系

[設計意圖]用一連串的問題引導學生發(fā)現一次函數與二元一次方程在數與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。

2、探究一次函數與二元一次方程組的關系

[設計意圖] 學生經過自主探索、合作交流,從數和形兩個角度認識一次函數與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現知識的形成過程,避免單純地記憶,使學習過程成為一種再創(chuàng)造的過程。此時教師及時對學生進行鼓勵,充分肯定學生的探究成果,關注學生的情感體驗。

(三)乘坐智慧快車

例題:我市一家電信公司給顧客提供兩種上網收費方式:方式A以每分0.1元的價格按上網時間計費;方式B除收月基費20元外再以每分0 .05元的價格按上網時間計費。如何選擇收費方式能使上網者更合算?

[設計意圖]為培養(yǎng)學生的發(fā)散思維和規(guī)范解題的習慣,引導學生將上網問題延伸為例題,并用問題:你家選擇的上網收費方式好嗎?再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。通過此問題的探究,使學生有效地理解本節(jié)課的難點,體會數形結合這一思想方法的應用。

(四)體驗成功喜悅

1、搶答題

2、旅游問題

[設計意圖]抓住學生對競爭充滿興趣的心理特征,用搶答題使學生的眼、耳、腦、口得到充分的調動,并在搶答中品味成功的快樂,提高思維的速度。在學生感興趣的旅游問題中,進一步培養(yǎng)學生應用數學的意識,更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。

(五)分享你我收獲

在課堂臨近尾聲時,向學生提出:通過今天的學習,你有什么收獲?你印象最深的是什么?

[設計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。

(六)開拓嶄新天地

1、數學日記

2、布置作業(yè)

[設計意圖]新課程強調發(fā)展學生數學交流的能力,用數學日記給學生提供一種表達數學思想方法和情感的方式,以體現評價體系的多元化,并使學生嘗試用數學的眼睛觀察事物,體驗數學的價值。作業(yè)由必做題和選做題組成,體現分層教學,讓不同的人在數學上得到不同的發(fā)展。

四、教學設計反思

1、貫穿一個原則以學生為主體的原則

2、突出一個思想數形結合的思想

3、體現一個價值數學建模的價值

4、滲透一個意識應用數學的意識

《一次函數與二元一次方程(組)》教案

教學目標

知識技能:理解一次函數與二元一次方程(組)的關系,會用圖象法解二元一次方程組。

情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹的科學態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信心。

教學重難點

重點:一次函數與二元一次方程(組)關系的探索。

難點:綜合運用方程(組)、不等式和函數的知識解決實際問題。

教學過程

(一)引入新課

多媒體播放一段發(fā)生在電信公司里的情景:一顧客準備辦理上網業(yè)務,發(fā)現有兩種收費方式:方式A以每分鐘0.1元的價格按上網時間計費;方式B除收月基費20元外再以每分鐘0.05元的價格按上網時間計費。顧客說他每月上網的費用按這兩種收費方式計算都是一樣多。求這位顧客打算每月上網多長時間?多少費用?

學生已經學習過列方程(組)解應用題,因此可能列出一元一次方程 或二元一次方程組,用方程模型解決問題。結合前面對一次函數與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:一次函數與二元一次方程組之間是否也有聯系呢?,從而揭示課題。

(二)進行新課

1、探究一次函數與二元一次方程的關系

填空:二元一次方程 可以轉化為 ________。

思考:(1)直線 上任意一點 一定是方程 的解嗎?(2)是否任意的二元一次方程都可以轉化為這種一次函數的形式?

(3)是否直線上任意一點的坐標都是它所對應的二元一次方程的解?

2、探究一次函數圖像與二元一次方程組的關系

(1)在同一坐標系中畫出一次函數 和 的圖象,觀察兩直線的交點坐標是否是方程組 的解?并探索:是否任意兩個一次函數的交點坐標都是它們所對應的二元一次方程組的解?

此時教師留給學生充分探索交流的時間與空間,對學生可能出現的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當于確定兩條直線交點的坐標。

(2)當自變量 取何值時,函數 與 的值相等?這個函數值是什么?這一問題與解方程組 是同一問題嗎?

進一步歸納出:從數的角度看,解方程組相當于考慮自變量為何值時兩個函數的值相等,以及這個函數值是何值。

3、列一元二次不等式

例題:我市一家電信公司給顧客提供兩種上網收費方式:方式A以每分0.1元的價格按上網時間計費;方式B除收月基費20元外再以每分0 .05元的價格按上網時間計費。如何選擇收費方式能使上網者更合算?

解法1:設上網時間為 分,若按方式A則收 元;若按方式B則收 元。然后在同一坐標系中分別畫出這兩個函數的圖象,計算出交點坐標 ,結合圖象,利用直線上點位置的高低直觀地比較函數值的大小,得到當一個月內上網時間少于400分時,選擇方式A省錢;當上網時間等于400分時,選擇方式A、B沒有區(qū)別;當上網時間多于400分時,選擇方式B省錢。

解法2:設上網時間為 分,方式B與方式A兩種計費的差額為 元,得到一次函數: ,即 ,然后畫出函數的圖象,計算出直線與 軸的交點坐標,類似地用點位置的高低直觀地找到答案。

注意:所畫的函數圖象都是射線。

4、習題

(1)、以方程 的解為坐標的所有點都在一次函數 _____的圖象上。

(2)、方程組 的解是________,由此可知,一次函數 與 的圖象必有一個交點,且交點坐標是________。

5、旅游問題

古城荊州歷史悠久,文化燦爛。

今年,大型歷史劇《萬歷首輔張居正》在荊州封鏡后,來荊州的游客更是絡繹不絕。據悉,張居正紀念館門票標價20元/張,近期正在進行優(yōu)惠活動,購買時有兩種方式:方式A是團隊中每位游客按8折購買;方式B是團隊中除5張按標價購買外,其余按7折購買。如果你是團隊的負責人,你會如何選擇購買方式使整個團隊更合算?

二元一次方程說課稿(4)

一次函數與二元一次方程說課稿范文

在教學工作者實際的教學活動中,編寫說課稿是必不可少的,說課稿可以幫助我們提高教學效果。那么問題來了,說課稿應該怎么寫?以下是小編精心整理的一次函數與二元一次方程說課稿范文,歡迎閱讀,希望大家能夠喜歡。

一、教材分析

(一)教材的地位和作用

函數、方程和不等式都是人們刻畫現實世界的重要數學模型。用函數的觀點看方程(組)與不等式,學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數的角度將三者統(tǒng)一起來,感受數學的統(tǒng)一美,學生在探索過程中體驗到的數形結合以及數學建模思想,既是對前面所學知識的升華,同時也對今后學習高中的解析幾何有著十分重要的意義。

(二)教學目標

新一輪的課程改革,旨在促進學生全面、持續(xù)、和諧的發(fā)展,我認為本節(jié)課的教學應達到以下目標:知識技能方面:理解一次函數與二元一次方程組的關系,會用圖象法解二元一次方程組;

數學思考方面:經歷一次函數與二元一次方程(組)關系的探索及相關實際問題的解決過程,學會用函數的觀點去思考問題;

解決問題方面:能綜合應用一次函數、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題;

情感態(tài)度方面:在探究活動中培養(yǎng)學生嚴謹的科學態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信。

(三)教學重、難點

從以上目標可以看出,學生既要通過對一次函數與二元一次方程(組)關系的探究,習得知識、培養(yǎng)能力,又要用此關系解決相關實際問題,因此,本節(jié)課的教學重點應是一次函數與二元一次方程(組)關系的探索??紤]到八年級學生的數學應用意識不強,本節(jié)課的難點應是綜合運用方程(組)、不等式和函數的知識解決相關實際問題。而關鍵則是通過問題情境的設計,激發(fā)學生的求知欲,引導學生探索、交流,引導學生發(fā)現、分析、解決問題。

二、教法分析

《數學課程標準》明確指出“數學教學是數學活動的教學”,“學生是數學學習的主人”。教師的職責在于向學生提供從事數學活動的機會,在活動中激發(fā)學生的學習潛能,引導學生自由探索、合作交流與實踐創(chuàng)新。對于認知主體來說,八年級學生樂于探索,富于幻想,但他們的數學推理能力以及對知識的主動遷移能力較弱,為幫助學生更好地構建新的認知結構,促進學生的主動發(fā)展,本節(jié)課我采用情境—探究式教學法,以“情境——問題——探究——交流——應用——反思——提高”的模式展開,以學生為中心,使其在“生動活潑、民主開放、主動探索”的.氛圍中愉快學習。

三、過程分析

本著重實際、重探究、重過程、重交流的教學宗旨,我將本節(jié)課的教學設計成以下六個環(huán)節(jié):情景導入——探究合作——解決問題——鞏固提高——歸納小結——布置作業(yè)。

這節(jié)課,我首先用貼近學生實際、學生感興趣的問題——上網交費問題引導學生進入本節(jié)課的學習,充分調動學生的積極性。課件展示學生回答的用列方程組解答的過程,并提出問題:“同學們在解這個二元一次方程組時,基本上都是用的代入法或加減法,那么解二元一次方程組還有其它的方法嗎?”學生討論后可能會感到束手無策,感到原有的知識不夠用了。一石激起千層浪,問題提出來后,如何解決呢?此時,作為教師,應把握好組織者、引導者和合作者的身份,不要急于發(fā)表自己的意見,而應啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的態(tài)勢,從而喚起學生強烈的學習熱情,使他們主動積極地投入到探索活動中來。另外,此問題的設置也為后面例題的講解作好鋪墊,有利于教學難點的突破。

為使學生更好地掌握本節(jié)課的重點知識,我遵循從特殊到一般,再從一般到特殊的認知規(guī)律,設計了以下問題“你們能否將方程轉化為一次函數的形式呢?”“如果能,你們能在平面直角坐標系中能畫出它的圖象嗎?”在學生將方程轉化為一次函數的形式并畫出圖象后,我引導學生觀察直線上的幾個點,發(fā)現它們的坐標都是方程的解,緊接著問“直線上任意一點的坐標一定是方程的解嗎?”“是否任意的二元一次方程都可以轉化為一次函數的形式呢?”“是否所有直線上任意一點的坐標都是它所對應的二元一次方程的解呢?”學生先獨立思考,然后小組討論,不難發(fā)現:每個二元一次方程都對應一個一次函數,于是也就對應一條直線。一連串的問題由淺入深,環(huán)環(huán)相扣,引導學生發(fā)現一次函數與二元一次方程在數與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。

緊接著問學生:“你能用剛才的方法研究另一個方程2x—y=1嗎?”學生在同一坐標系中畫出一次函數y=2x—1的圖象后,發(fā)現兩條直線有一個交點,我又問“這個交點坐標與這兩條直線所對應的方程的解有什么關系?與這兩個方程組成的方程組的解又有什么關系?”此時,學生慢慢體會到:既然每個二元一次方程都對應一條直線,二元一次方程的每一個解又對應直線上的每一個點,那么兩個二元一次方程的公共解就對應著兩條直線的公共點,也就是說,二元一次方程組的解不就是對應著兩條直線的交點嗎?這個時期,教師應留給學生充分探索交流的時間與空間,對學生可能出現的疑問給予及時幫助,師生共同歸納出:用畫圖象的方法可以解二元一次方程組,從而解決了本節(jié)課開頭所提出的問題。然后共同歸納:從“形”的角度看,解方程組相當于確定兩條直線交點的坐標。這告訴我們,既可用畫圖象的方法可以解二元一次方程組,也可用解方程組的方法求兩條直線交點的坐標。利用剛才已有的探究經驗,學生很容易想到此問題的探究還可以從數的角度看,進一步歸納出:從“數”的角度看,解方程組相當于考慮自變量為何值時兩個函數的值相等,這個函數值是何值。

這樣,學生經過自主探索、合作交流,從數和形兩個角度認識了一次函數與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,并使學習過程成為一種再創(chuàng)造的過程。學生從一個個小問題的回答,到最后的歸納,充分享受學習、探究帶來的快樂,此時教師應充分肯定學生的探究成果,及時對學生進行鼓勵,關注學生的情感體驗。

為滿足學生學以致用、爭強好勝的心理需求,我特意設計了兩個搶答題,既加強了對所學知識的消化理解,又調動了學生的積極性,更讓他們在搶答中品味到了成功的快樂。趁著學生高漲的情緒,我迅速引入開頭部分意猶未盡的上網收費問題,加以變式,再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。經過一番探索,學生可能想到:要選擇合理的收費方式就需要對它們所收費用的大小進行比較,因此一定會有學生用過去的知識——方程或不等式解決問題,對于這部分學生的想法要給予充分的肯定表揚,然后繼續(xù)提問“你能用今天所學的圖象法來解決這個問題嗎?”引導學生建立函數模型進行探索。

學生在同一坐標系中分別畫出兩個一次函數的圖象后,我引導學生觀察圖象的特征,學生討論后發(fā)現當0≤x<400時,紅色點在藍色點的上方;當x=400時,紅色點與藍色點重合;當x>400時,紅色點在藍色點的下方,這樣利用直線上點位置的高低直觀地比較函數值的大小,從而找到答案。為避免圖象法作圖誤差造成的不足,可引導學生通過代數計算求出交點坐標。為培養(yǎng)學生一題多解的能力,我啟發(fā)學生用作差法,類似地用點位置的高低直觀地找到y(tǒng)>0,y=0及y<0時所對應的x的范圍,進而得到答案。通過對實際問題的探究,學生可以發(fā)現圖象法的直觀性,體會數形結合這一思想方法的應用,并學會用函數的觀點,動態(tài)地分析不等式和方程(組)。

為了鞏固學生的學習成果,我把剛剛結束不久的鐵山礦冶文化旅游節(jié)帶進課堂,讓學生欣賞一組美麗的黃石礦冶文化景點圖片,在學生體驗家鄉(xiāng)美好的輕松愉快氛圍中,我再一次出示了一個與之有關的旅游購票問題,并鼓勵學生用不同的方法進行解答,進一步培養(yǎng)學生應用數學的意識,從而更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。

在課堂臨近尾聲時,引導學生對本節(jié)課所學進行小結,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。嘗試開放式課堂教學,以真正體現學生的主體地位,使課堂活動民主化,多樣化。

本節(jié)課的作業(yè)由必做題和選做題組成,體現分層教學,讓不同的學生在數學上得到不同的發(fā)展。

四、設計說明

這節(jié)課,我始終貫穿以學生為主體的原則,突出數形結合的思想,體現數學建模的價值,滲透應用數學的意識,關注學生個性的發(fā)展,讓每一個學生在課堂上都有所感悟,都有著各自的數學體驗,不同的學生在數學的各個不同方面上都得到不同的發(fā)展。

二元一次方程說課稿(5)

蘇科版數學八年級上冊說課稿 二元一次方程與一次函數

作為一名優(yōu)秀的教育工作者,時常會需要準備好說課稿,通過說課稿可以很好地改正講課缺點。如何把說課稿做到重點突出呢?以下是小編整理的蘇科版數學八年級上冊說課稿 二元一次方程與一次函數,供大家參考借鑒,希望可以幫助到有需要的朋友。

今天,我說課的內容是蘇科版八年級上冊中的《二元一次方程與一次函數》的第一課時。我打算主要從“說教材,說教法,說學法,說過程”這四大塊內容來談談我的設計。

一、說教材

(一)教材分析(所處的地位及作用)

“二元一次方程與一次函數”是在前面學習了“一次函數”與“二元一次方程”的基礎上來學習的。是對前面“一次函數”和“二元一次方程”的一次提高和升華,也為以后進一步學習“用二次函數圖象求一元二次方程的近似解”作鋪墊。其中用到的“數形結合”思想是我們中學學習數學的重要思想之一,也是我們數學學習中經常用來解決一些實際問題的重要手段。

(二)教學目標:

(1)使學生初步理解二元一次方程與一次函數的關系。

(2)能利用二元一次方程組確定一次函數的表達式。

(3)能根據一次函數圖象求出二元一次方程組的近似解。

(4)進一步培養(yǎng)學生畫圖,識圖能力;培養(yǎng)學生初步的數形結合意識和能力。

(三)教學重點、難點;

重點:

1、二元一次方程和一次函數的關系。

2、能根據一次函數的圖象求二元一次方程組的近似解。

難點:

1、二元一次方程和一次函數之間的對應關系即數形結合的意識和能力。

2、二元一次方程的解與一次函數圖象交點坐標之間的對應關系。

二、說教法

本節(jié)課我通過與學生一起探討問題,解決問題,以達師生互動的效果。引導學生從已有的知識和生活經驗出發(fā),提出問題,讓學生自己動手操作,發(fā)現問題,解決問題,從而歸納出解決問題的一般方法。

針對本節(jié)課的重點,難點“二元一次方程(組的解)與一次函數圖象(的交點坐標)之間的對應關系”,由于其理解難度大,因此我準備采用“創(chuàng)設情境”用問題串的形式引導學生動手操作、自主探索來研究發(fā)現“二元一次方程(組的解)與一次函數圖象(的交點坐標)”兩者之間的內在聯系。對于書上出現的例1:準備先通過學生自己思考,教師引導評講最終解決問題;對于書上的練習,主要通過學生自己練習,以達到“鞏固知識”的`目的。

三、說學法

在本節(jié)課開頭,我以學生原有的知識作為基礎,創(chuàng)設有助于學生探索思考的問題情境,引導學生用“探索————研究————發(fā)現”的方法,來獲得知識,掌握知識。不過在這個過程中,可能學生的自主探究能力比較差,因此在這方面我打算更多的引導以解決學生不足之處,發(fā)現問題,解決問題的能力得到了進一步的發(fā)展;同時也培養(yǎng)了學生積極思考,認真探索的良好學習習慣。

四、說過程

這節(jié)課我就首先從學生已學過的二元一次方程聯想到一次函數出發(fā)提出問題:二元一次方程、一次函數、直線的關系。接著通過對書上的問題串讓學生進行合作交流的探索和師生的共同探索得出:

⑴二元一次方程、一次函數、直線(一次函數的圖象)的關系;

⑵函數的對應值、圖象上點的橫縱坐標、方程的解的關系;并由此產生兩種解二元一次方程的方法(圖解法和函數法);

⑶方程組的解和兩直線交點的關系。進而會用圖象法解二元一次方程(組)。

五、反思困惑

由于本節(jié)課是”二元一次方程與一次函數”首次緊密結合,其中充分體現了數學學習中數形結合的思想,學生在理解上有一定難度。因此,如何更好的將本節(jié)課的數形結合思想灌輸到學生中,特別是在講到二元一次方程與一次函數的聯系,在這方面?zhèn)湔n的時候感到比較吃力。希望各位老師給予批評與指正。在這節(jié)課的設計中,仍有許多不足之處,請多請教!

【微語】用時間來看人,時間能檢驗一切。

溫馨提示:
本文【二元一次方程說課稿(匯總5篇)】由作者教培參考提供。該文觀點僅代表作者本人,培訓啦系信息發(fā)布平臺,僅提供信息存儲空間服務,若存在侵權問題,請及時聯系管理員或作者進行刪除。
我們采用的作品包括內容和圖片部分來源于網絡用戶投稿,我們不確定投稿用戶享有完全著作權,根據《信息網絡傳播權保護條例》,如果侵犯了您的權利,請聯系我站將及時刪除。
內容侵權、違法和不良信息舉報
Copyright @ 2025 培訓啦 All Rights Reserved 版權所有.