培訓(xùn)啦 考試資料 > 說(shuō)課稿

多邊形內(nèi)角和說(shuō)課稿(推薦10篇)

教培參考

教育培訓(xùn)行業(yè)知識(shí)型媒體

發(fā)布時(shí)間: 2024-08-12 13:30:13

多邊形內(nèi)角和說(shuō)課稿(1)

我說(shuō)課的內(nèi)容是人教版七年級(jí)(下)冊(cè)第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時(shí)。我將在新課程理念的指導(dǎo)下從以下七個(gè)方面進(jìn)行說(shuō)課。

一、教材分析

多邊形的內(nèi)角和是在三角形內(nèi)角和知識(shí)基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識(shí)探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對(duì)發(fā)展學(xué)生的空間觀念和幾何直覺(jué)有很大的幫助。

二、學(xué)情分析

1、我所任教的班級(jí),大部分學(xué)生來(lái)自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對(duì)數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。

2、本節(jié)課讓學(xué)生通過(guò)實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對(duì)三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識(shí)。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會(huì)想到量、拼、分的方法,但是分割“多邊形為三角形”這一過(guò)程會(huì)是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過(guò)程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對(duì)本課知識(shí)的學(xué)習(xí)和掌握。

三、教學(xué)目標(biāo)分析

新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過(guò)程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。

【知識(shí)與技能】

掌握多邊形的內(nèi)角和公式,并能熟練運(yùn)用。

【數(shù)學(xué)思考】

(1)通過(guò)測(cè)量,類比,推理等教學(xué)活動(dòng),探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過(guò)程的條理性,發(fā)展推理能力和語(yǔ)言表達(dá)能力。

(2)通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

【解決問(wèn)題】

通過(guò)探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問(wèn)題的方法,并能有效的解決問(wèn)題。

【情感態(tài)度】

1、通過(guò)動(dòng)手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。

2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過(guò)程中激發(fā)、培養(yǎng)學(xué)生的愛(ài)國(guó)主義熱情。

基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):

【教學(xué)重點(diǎn)】探索多邊形的內(nèi)角和公式。

【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識(shí),提高課堂效率。

四、教法和學(xué)法分析

本節(jié)課借鑒了美國(guó)教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:

1.教學(xué)方法:

根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過(guò)觀察,自己動(dòng)手,從實(shí)踐中獲得知識(shí)。整個(gè)探究學(xué)習(xí)的過(guò)程充滿了師生之間、學(xué)生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。

2.學(xué)習(xí)方法:

利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

五、說(shuō)教學(xué)流程

1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課

情景:請(qǐng)學(xué)生觀察“上海世博園”的宣傳視頻。

從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過(guò)觀看上海世博園視頻,能激發(fā)學(xué)生的愛(ài)國(guó)主義熱情,并引導(dǎo)學(xué)生大膽提出問(wèn)題,對(duì)建筑物的外觀抽象成已知的三角形、長(zhǎng)方形、正方形等多邊形。提出問(wèn)題:三角形的內(nèi)角和是多少?設(shè)計(jì)這個(gè)問(wèn)題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識(shí)“三角形內(nèi)角和等于180°”有助于解決后面的問(wèn)題。接下來(lái)提出問(wèn)題,正方形、長(zhǎng)方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個(gè)確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識(shí),將有助于本堂課問(wèn)題的解決,也為后面習(xí)題作鋪墊。

2、環(huán)節(jié)二:合作交流、探索新知。

活動(dòng)1:

猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問(wèn)題引導(dǎo)學(xué)生從正方形、長(zhǎng)方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測(cè)出四邊形的內(nèi)角和等于360度。

議一議:你是怎樣得到的?你能找到幾種方法?這個(gè)環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問(wèn)題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過(guò)這個(gè)問(wèn)題讓學(xué)生自然過(guò)渡到用作輔助線的方法求多邊形的內(nèi)角和,同時(shí)也要告訴學(xué)生在測(cè)量和剪拼活動(dòng)中可能會(huì)產(chǎn)生誤差,由此感受到作輔助線在解決幾何問(wèn)題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵(lì)學(xué)生積極參與,合作交流,用自己的語(yǔ)言表達(dá)解決問(wèn)題的方式方法,發(fā)展學(xué)生的語(yǔ)言表達(dá)能力與推理能力。

針對(duì)不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵(lì)學(xué)生尋找多種分割形式,深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。然后讓學(xué)生表達(dá)自己解決問(wèn)題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索,體驗(yàn)解決問(wèn)題策略的多樣性。

想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u(píng)價(jià)和鼓勵(lì)。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。

活動(dòng)2:

做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的'內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過(guò)程,加深對(duì)轉(zhuǎn)化思想的理解,通過(guò)增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過(guò)程,加深對(duì)轉(zhuǎn)化思想方法的理解,體會(huì)由簡(jiǎn)單到復(fù)雜,由特殊到一般的思想方法。

上節(jié)課我們學(xué)習(xí)了多邊形的對(duì)角線,我們來(lái)看對(duì)角線與多邊形的邊數(shù)和多邊形的內(nèi)角和之間有什么關(guān)系?

議一議:

問(wèn)題1:對(duì)比上面探究四邊形內(nèi)角和的過(guò)程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?

問(wèn)題2:能否采用不同的分割方法來(lái)解決這些問(wèn)題?

問(wèn)題3:n邊形的內(nèi)角和是多少?

活動(dòng)3:

想一想:采取表格的形式,首先請(qǐng)學(xué)生找出將多邊形分割成三角形的個(gè)數(shù),再根據(jù)三角形個(gè)數(shù)求出多邊形的內(nèi)角和。學(xué)生分組討論、歸納分析并展示自己發(fā)現(xiàn)的規(guī)律,要求用已“探究”的不同多邊形來(lái)有條理地發(fā)現(xiàn)和概括出多邊形的邊數(shù)與內(nèi)角和之間的關(guān)系,水到渠成地歸納、類比推出n邊形的內(nèi)角和公式,讓學(xué)生體會(huì)從特殊到一般的思考問(wèn)題的方法根據(jù)本組探究過(guò)程填寫下面表格的第二、三、四列,你能從中發(fā)現(xiàn)什么規(guī)律?

嘗試完成第五列n邊形的探究。

由于學(xué)生不熟悉完全歸納法,采取表格的形式使歸納更富條理性。為了讓學(xué)生更好的理解多邊形內(nèi)角和公式(n-2)×180°,我又鮮明的指出:N表示什么?

但是學(xué)生有可能出現(xiàn)其它的解決問(wèn)題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動(dòng)3公式的得出帶來(lái)困難。所以教師要因勢(shì)利導(dǎo),給學(xué)生正確的評(píng)價(jià)。在探索的過(guò)程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問(wèn)題的最佳方法的能力。

練一練:為了使學(xué)生達(dá)到對(duì)知識(shí)的鞏固與應(yīng)用,我特地設(shè)計(jì)了一組(5個(gè))即時(shí)搶答題,通過(guò)這些題目學(xué)生當(dāng)堂訓(xùn)練、獨(dú)立計(jì)算,并根據(jù)學(xué)生都喜好競(jìng)賽的特點(diǎn),采用搶答式完成。運(yùn)用所學(xué)公式解決問(wèn)題并鞏固、理解、記憶公式。

搶答:

(1)過(guò)一個(gè)多邊形一個(gè)頂點(diǎn)有10條對(duì)角線,則這是邊形.

(2)過(guò)一個(gè)多邊形一個(gè)頂點(diǎn)的所有對(duì)角線將這個(gè)多邊形分成五個(gè)三角形,則這是邊形.

(3)多邊形的內(nèi)角和隨著邊數(shù)的增加而,邊數(shù)增加一條時(shí)它的內(nèi)角和增加度。

(4)十二邊形的內(nèi)角和等于度。

(5)一個(gè)多邊形的內(nèi)角和等于720度,那么這個(gè)多邊形是邊形.

3、環(huán)節(jié)三:例題講解,知識(shí)鞏固

在此,我設(shè)計(jì)了2個(gè)例題,并對(duì)教科書上的例題作了較小的改動(dòng),書上的例1簡(jiǎn)略講解,這個(gè)例題就是對(duì)四邊形的內(nèi)角和的簡(jiǎn)單應(yīng)用,對(duì)于學(xué)生來(lái)說(shuō)比較簡(jiǎn)單;對(duì)于例2我把書后面的85頁(yè)習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識(shí)間的融會(huì)貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識(shí)。

4、環(huán)節(jié)四:分組競(jìng)賽、情感升華

(1)智慧大比拼

內(nèi)容:P87的練習(xí)分成2類。

通過(guò)新穎的形式激發(fā)學(xué)生的競(jìng)爭(zhēng)意識(shí)和主動(dòng)參與活動(dòng)的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識(shí)解決問(wèn)題,鞏固本節(jié)知識(shí)。

(2)拓展探究

內(nèi)容:用一把剪刀,將一張正方形卡片一個(gè)角截去,剩下的卡片是一個(gè)幾邊形?它的內(nèi)角和是多少?

小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵(lì)學(xué)生積極參與思考、大膽嘗試、主動(dòng)探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會(huì)成功的喜悅。

(3)情系世博

內(nèi)容:2010年5月1日世博會(huì)在上海拉開帷幕,小明為了紀(jì)念這一特殊年號(hào),他想用2010°設(shè)計(jì)一個(gè)多邊形,他的愿望能實(shí)現(xiàn)嗎?

引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛(ài)國(guó)之情。

5、環(huán)節(jié)五:暢所欲言、分享成果

請(qǐng)學(xué)生談自己學(xué)習(xí)過(guò)程中的收獲,并整理自己參與數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時(shí)也是給學(xué)生正確地評(píng)價(jià)自己和他人表現(xiàn)的機(jī)會(huì),這也是給教者本身一個(gè)反思提高的機(jī)會(huì)。通過(guò)這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識(shí)系統(tǒng)化,從感性認(rèn)識(shí)上升為理性認(rèn)識(shí)。

6、環(huán)節(jié)六:布置作業(yè)、課后提升

(1)習(xí)題7.3第2題、第4題。

(2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。

采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。

六、評(píng)價(jià)分析

評(píng)價(jià)學(xué)生,不僅僅是一個(gè)手段和結(jié)果,它對(duì)學(xué)生的人格、個(gè)性的發(fā)展有著極其重要的作用。新課程對(duì)課程的評(píng)價(jià)應(yīng)把握形成性、發(fā)展性評(píng)價(jià)和終結(jié)性評(píng)價(jià)相結(jié)合,在實(shí)踐中我打算在課堂上從以下幾個(gè)方面進(jìn)行評(píng)價(jià):

1、評(píng)價(jià)在學(xué)習(xí)中各種能力〈如表達(dá)、想象、動(dòng)手、思維、自學(xué)能力等〉的發(fā)展情況。

2、評(píng)價(jià)學(xué)習(xí)過(guò)程中的創(chuàng)新表現(xiàn)。

3、評(píng)價(jià)在學(xué)習(xí)過(guò)程中對(duì)身邊事物、社會(huì)現(xiàn)實(shí)的關(guān)注程度。

評(píng)價(jià)必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽(yù)感、自尊心和進(jìn)取心為目的,使其產(chǎn)生獲取成功的動(dòng)力。

七、說(shuō)板書設(shè)計(jì)

最后,我的板書設(shè)計(jì)力求簡(jiǎn)潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點(diǎn),及主要的思想方法。

多邊形內(nèi)角和說(shuō)課稿(2)

各位評(píng)委老師大家好,我是來(lái)自,我今天說(shuō)課的題目是《多邊形的內(nèi)角和》。它是<義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書>人教版,七年級(jí)下冊(cè)第七章第三節(jié)的內(nèi)容,分兩課時(shí),我今天說(shuō)的是第二課時(shí)。對(duì)本節(jié)課我將從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)、教學(xué)過(guò)程設(shè)計(jì)、教學(xué)評(píng)價(jià)設(shè)計(jì)六個(gè)方面進(jìn)行闡述。

一、背景分析

1、學(xué)習(xí)任務(wù)分析:

《三角形》這一章章節(jié)結(jié)構(gòu)是“與三角形有關(guān)的線段”、“與三角形有關(guān)的角” 、“多邊形及其內(nèi)角和”、“課題學(xué)習(xí)鑲嵌”。按照傳統(tǒng)的教材編寫程序,受三角形、多邊形、圓順次展開的限制,這些內(nèi)容分別設(shè)置在不同年級(jí),而新教材是一種專題式設(shè)計(jì),以內(nèi)角和為主題,先三角形內(nèi)角和,再順勢(shì)推廣到多邊形內(nèi)角和,最后將內(nèi)角和公式應(yīng)用于鑲嵌。這樣看來(lái)“多邊形及其內(nèi)角和”就起到了將知識(shí)應(yīng)用到生活中的橋梁作用。在前一節(jié)已經(jīng)學(xué)習(xí)了多邊形以及多邊形的對(duì)角線、多邊形的內(nèi)角、外角等概念,三角形是多邊形的一種,學(xué)生已經(jīng)掌握了三角形和特殊的四邊形(如長(zhǎng)方形、正方形)內(nèi)角和,所以這節(jié)課很適合于讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)多邊形內(nèi)角和公式。適合采用”教師引導(dǎo)下的自主探究”的教學(xué)方法。探索多邊形內(nèi)角和公式是本節(jié)課的重點(diǎn)。

2、學(xué)生情況分析:

(1)學(xué)生的年齡特點(diǎn)和認(rèn)知特點(diǎn):七年級(jí)學(xué)生大約十二三歲,思維活躍,求知欲強(qiáng),容易接受新鮮事物,對(duì)于傳統(tǒng)的課堂教學(xué)方式比較厭倦,本節(jié)課采取教師引導(dǎo)下的自主探究方法,符合學(xué)生的認(rèn)知特點(diǎn),容易調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,滿足學(xué)生的學(xué)習(xí)愿望。

(2)學(xué)生對(duì)即將學(xué)習(xí)的內(nèi)容的知識(shí)關(guān)聯(lián)區(qū):本節(jié)課讓學(xué)生通過(guò)實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對(duì)三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識(shí)。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會(huì)想到量、拼、分的方法,但是分割多邊形為三角形這一過(guò)程會(huì)是學(xué)生學(xué)習(xí)的難點(diǎn),所以在探究的過(guò)程中教師要想辦法把難點(diǎn)分散,利于學(xué)生對(duì)本課知識(shí)的學(xué)習(xí)和掌握。

二、教學(xué)目標(biāo)設(shè)計(jì)

依據(jù)新課標(biāo)的要求,我設(shè)計(jì)本節(jié)課的教學(xué)目標(biāo)為以下四個(gè)方面:

知識(shí)與技能:

通過(guò)實(shí)驗(yàn)探索多邊形內(nèi)角和公式。

數(shù)學(xué)思考:

1、經(jīng)歷歸納、猜想、推理等過(guò)程,發(fā)展合情推理能力和語(yǔ)言表達(dá)能力,掌握復(fù)雜問(wèn)題化為簡(jiǎn)單問(wèn)題,化未知為已知的思想方法。

2、通過(guò)把多邊形轉(zhuǎn)化為三角形的過(guò)程,體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,感受從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

解決問(wèn)題:

通過(guò)探索多邊形內(nèi)角和的公式,嘗試從不同的角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,積累解決問(wèn)題的經(jīng)驗(yàn)。

情感態(tài)度:

通過(guò)動(dòng)手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。同時(shí),體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。

三、課堂結(jié)構(gòu)設(shè)計(jì)

整個(gè)教學(xué)過(guò)程分為創(chuàng)設(shè)情景、建立模型、解釋與應(yīng)用、拓展與探究、反思與作業(yè)五個(gè)環(huán)節(jié)。

四、教學(xué)媒體設(shè)計(jì)

七年級(jí)學(xué)生思維活躍,容易接受新鮮事物,對(duì)直觀的東西更容易接受,我采用了多媒體課件這一教學(xué)媒體,最大限度的調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,滿足他們的學(xué)習(xí)愿望,并且為突出重點(diǎn)突破難點(diǎn)提供了幫助。另外利用實(shí)物展臺(tái)可以節(jié)省時(shí)間以便更好的完成教學(xué)任務(wù)。

五、教學(xué)過(guò)程設(shè)計(jì):

1、創(chuàng)設(shè)情景:

我設(shè)計(jì)了兩個(gè)情景:

情景一:演示顯示生活中的各種多邊形模型,直接引出課題:您想知道任意一個(gè)多邊形的內(nèi)角和嗎?今天我們就來(lái)進(jìn)一步探討多邊形的內(nèi)角和。直接導(dǎo)入,簡(jiǎn)潔明快,使學(xué)生更容易進(jìn)入學(xué)習(xí)狀態(tài)。

情景二:拋出問(wèn)題三角形的內(nèi)角和是多少度?長(zhǎng)方形的內(nèi)角和等于多少度?正方形的內(nèi)角和等于多少度?學(xué)生積極動(dòng)腦回顧并回答,目的是建立與學(xué)生的已有知識(shí)的聯(lián)系,有助于后繼問(wèn)題的解決。也易于學(xué)生接受。

2、建立模型:

活動(dòng)1:

猜一猜:任意四邊形的內(nèi)角和等于多少度?引導(dǎo)學(xué)生從正方形、長(zhǎng)方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測(cè)出四邊形的內(nèi)角和等于360度。

議一議:你是怎樣得到的?你能找到幾種方法?學(xué)生可能找到以下幾種方法:①“量”——即先測(cè)量四邊形四個(gè)內(nèi)角的度數(shù),然后求四個(gè)內(nèi)角的和。學(xué)生的度量過(guò)程可能會(huì)產(chǎn)生誤差,所以利用幾何畫板演示,易于學(xué)生理解②“拼”——即把四邊形的四個(gè)內(nèi)角剪下來(lái),拼在一起,得到一個(gè)周角;③“分”——即通過(guò)添加輔助線的方法,把四邊形分割成三角形。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵(lì)學(xué)生積極參與,合作交流,用自己的語(yǔ)言表達(dá)解決問(wèn)題的方式方法,發(fā)展學(xué)生的語(yǔ)言表達(dá)能力與推理能力。鼓勵(lì)學(xué)生尋找多種分割形式,深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索,體驗(yàn)解決問(wèn)題策略的多樣性。然后由各小組成員匯報(bào)探索的思路與方法,講明理由。此環(huán)節(jié)為了節(jié)省學(xué)生在黑板前重新畫圖的時(shí)間,可以讓學(xué)生利用實(shí)物展臺(tái)展示圖形,亮出觀點(diǎn),鼓勵(lì)學(xué)生接受別人觀點(diǎn)的同時(shí),樂(lè)于表達(dá)自己的觀點(diǎn),發(fā)展學(xué)生的語(yǔ)言表述能力。

想一想:這些分法有什么異同點(diǎn)。學(xué)生積極思考,大膽發(fā)言,教師給予正確的評(píng)價(jià)和鼓勵(lì)。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形,利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。

活動(dòng)2:

選一種你喜歡的上述分割的方法,求出五邊形、六邊形、七邊形的內(nèi)角和。學(xué)生先獨(dú)立思考,再分組活動(dòng)。教師深入小組,參與小組活動(dòng),及時(shí)了解學(xué)生探索的情況。然后由各小組成員利用實(shí)物展臺(tái)匯報(bào)探索的思路與方法,講明理由。通過(guò)增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過(guò)程,加深對(duì)轉(zhuǎn)化思想方法的理解,體會(huì)由簡(jiǎn)單到復(fù)雜,由特殊到一般的思想方法。同時(shí),在四邊形的基礎(chǔ)上,探索連續(xù)整數(shù)邊數(shù)的多邊形的內(nèi)角和與邊數(shù)間的關(guān)系。為活動(dòng)3歸納n邊形的內(nèi)角和準(zhǔn)備素材。讓學(xué)生選擇一種方法求內(nèi)角和的目的也是為活動(dòng)3奠定基礎(chǔ),便于公式的總結(jié)。但是還是有可能出現(xiàn)其它的解決問(wèn)題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,但是這種方法給活動(dòng)3公式的得出帶來(lái)困難。所以教師要因勢(shì)利導(dǎo),給學(xué)生正確的評(píng)價(jià)。在探索的過(guò)程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問(wèn)題的最佳方法的能力。

活動(dòng)3:

想一想、議一議:n邊形的內(nèi)角和怎樣表示呢?學(xué)生獨(dú)立思考的基礎(chǔ)上分組活動(dòng),解決問(wèn)題。也有可能出現(xiàn)剛才那種解決問(wèn)題的辦法,教師要因勢(shì)利導(dǎo),給予學(xué)生正確的評(píng)價(jià)。學(xué)生可能會(huì)歸納總結(jié)得出多邊形的內(nèi)角和等于以下不同形式的公式

①(n—2)180° ②180°n—360° ③180°(n—1)— 180°

通過(guò)任意多邊形轉(zhuǎn)化為三角形的過(guò)程,發(fā)展學(xué)生的空間想象能力。通過(guò)多邊形內(nèi)角和的探索,讓學(xué)生從特殊到一般歸納總結(jié)出多邊形內(nèi)角和公式,體會(huì)數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學(xué)推理過(guò)程和數(shù)學(xué)思考方法。在探索的過(guò)程中,再一次發(fā)展學(xué)生的推理能力和表達(dá)能力,在交流與合作的過(guò)程中,感受合作的重要性。

3、解釋與應(yīng)用

(1)智慧大比拼。通過(guò)新穎的形式激發(fā)學(xué)生的競(jìng)爭(zhēng)意識(shí)和主動(dòng)參與活動(dòng)的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識(shí)解決問(wèn)題,鞏固本節(jié)知識(shí)。目的是檢驗(yàn)學(xué)習(xí)效果,讓學(xué)生經(jīng)歷運(yùn)用知識(shí)解決問(wèn)題的過(guò)程,發(fā)展學(xué)生的推理能力和語(yǔ)言表述能力,給學(xué)生獲得成功體驗(yàn)的空間,激發(fā)學(xué)習(xí)的積極性,建立學(xué)好數(shù)學(xué)的自信心。

(2)情系奧運(yùn)。引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛(ài)國(guó)之情。

4、拓展與探究

小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵(lì)學(xué)生積極參與思考、大膽嘗試、主動(dòng)探討、勇于創(chuàng)新。讓學(xué)生深刻的'感受到合作交流的重要性,體會(huì)成功的喜悅。

5、反思與作業(yè)

請(qǐng)學(xué)生談自己學(xué)習(xí)過(guò)程中的收獲,并整理自己參與數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時(shí)也是給學(xué)生正確地評(píng)價(jià)自己和他人表現(xiàn)的機(jī)會(huì),這也是給教者本身一個(gè)反思提高的機(jī)會(huì)。

分層次留作業(yè),尊重學(xué)生的個(gè)性差異,讓不同的學(xué)生在數(shù)學(xué)學(xué)習(xí)上都有收獲和進(jìn)步。

六、教學(xué)評(píng)價(jià)設(shè)計(jì):

學(xué)生學(xué)習(xí)水平評(píng)價(jià):學(xué)生是否積極參與;是否獨(dú)立思考;是否富于想象;是否敢于否定;是否興趣濃厚;是否善于合作;能否主動(dòng)探索;能否自由表達(dá)。

學(xué)生學(xué)習(xí)效果評(píng)價(jià):通過(guò)解釋與應(yīng)用,拓展與探究?jī)蓚€(gè)環(huán)節(jié)初步了解部分學(xué)生對(duì)本節(jié)知識(shí)的掌握情況,課后通過(guò)分層次作業(yè),三天后進(jìn)行的小測(cè)驗(yàn),了解學(xué)生對(duì)本節(jié)內(nèi)容的掌握情況,及時(shí)發(fā)現(xiàn)問(wèn)題,對(duì)教學(xué)中的疏漏進(jìn)行彌補(bǔ)。

教師在教學(xué)過(guò)程中要及時(shí)根據(jù)學(xué)生回答,讓學(xué)生之間進(jìn)行互評(píng),反饋,同時(shí)對(duì)于不同層次的學(xué)生和不同難度問(wèn)題,教師要及時(shí)的給予反饋和評(píng)價(jià)。另外,通過(guò)學(xué)生評(píng)價(jià)自己和他人的表現(xiàn),教師也要進(jìn)行自我反思。

多邊形內(nèi)角和說(shuō)課稿(3)

我說(shuō)課的內(nèi)容是人教版七年級(jí)(下)冊(cè)第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時(shí)。我將在新課程理念的指導(dǎo)下從以下七個(gè)方面進(jìn)行說(shuō)課。

一、教材分析

多邊形的內(nèi)角和是在三角形內(nèi)角和知識(shí)基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識(shí)探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對(duì)發(fā)展學(xué)生的空間觀念和幾何直覺(jué)有很大的幫助。

二、學(xué)情分析

1、我所任教的班級(jí),大部分學(xué)生來(lái)自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對(duì)數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。

2、本節(jié)課讓學(xué)生通過(guò)實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對(duì)三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識(shí)。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會(huì)想到量、拼、分的方法,但是分割“多邊形為三角形”這一過(guò)程會(huì)是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過(guò)程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對(duì)本課知識(shí)的學(xué)習(xí)和掌握。

三、教學(xué)目標(biāo)分析

新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過(guò)程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。

【知識(shí)與技能】

掌握多邊形的內(nèi)角和公式,并能熟練運(yùn)用。

【數(shù)學(xué)思考】

(1)通過(guò)測(cè)量,類比,推理等教學(xué)活動(dòng),探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過(guò)程的條理性,發(fā)展推理能力和語(yǔ)言表達(dá)能力。

(2)通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

【解決問(wèn)題】

通過(guò)探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問(wèn)題的方法,并能有效的解決問(wèn)題。

【情感態(tài)度】

1、通過(guò)動(dòng)手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。

2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過(guò)程中激發(fā)、培養(yǎng)學(xué)生的愛(ài)國(guó)主義熱情。

基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):

【教學(xué)重點(diǎn)】探索多邊形的內(nèi)角和公式。

【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識(shí),提高課堂效率。

四、教法和學(xué)法分析

本節(jié)課借鑒了美國(guó)教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:

1、教學(xué)方法:

根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過(guò)觀察,自己動(dòng)手,從實(shí)踐中獲得知識(shí)。整個(gè)探究學(xué)習(xí)的過(guò)程充滿了師生之間、學(xué)生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。

2、學(xué)習(xí)方法:

利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

五、說(shuō)教學(xué)流程

1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課

情景:請(qǐng)學(xué)生觀察“上海世博園”的宣傳視頻。

從“情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過(guò)觀看上海世博園視頻,能激發(fā)學(xué)生的愛(ài)國(guó)主義熱情,并引導(dǎo)學(xué)生大膽提出問(wèn)題,對(duì)建筑物的外觀抽象成已知的三角形、長(zhǎng)方形、正方形等多邊形。提出問(wèn)題:三角形的內(nèi)角和是多少?設(shè)計(jì)這個(gè)問(wèn)題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識(shí)“三角形內(nèi)角和等于180°”有助于解決后面的問(wèn)題。接下來(lái)提出問(wèn)題,正方形、長(zhǎng)方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個(gè)確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識(shí),將有助于本堂課問(wèn)題的解決,也為后面習(xí)題作鋪墊。

2、環(huán)節(jié)二:合作交流、探索新知。

活動(dòng)1:

猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問(wèn)題引導(dǎo)學(xué)生從正方形、長(zhǎng)方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測(cè)出四邊形的內(nèi)角和等于360度。

議一議:你是怎樣得到的?你能找到幾種方法?這個(gè)環(huán)節(jié)學(xué)生可能出現(xiàn)“度量”、“剪拼”、“作輔助線”等等甚至更多的方法。為此我又拋出問(wèn)題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過(guò)這個(gè)問(wèn)題讓學(xué)生自然過(guò)渡到用作輔助線的方法求多邊形的內(nèi)角和,同時(shí)也要告訴學(xué)生在測(cè)量和剪拼活動(dòng)中可能會(huì)產(chǎn)生誤差,由此感受到作輔助線在解決幾何問(wèn)題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵(lì)學(xué)生積極參與,合作交流,用自己的語(yǔ)言表達(dá)解決問(wèn)題的方式方法,發(fā)展學(xué)生的語(yǔ)言表達(dá)能力與推理能力。

針對(duì)不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵(lì)學(xué)生尋找多種分割形式,深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。然后讓學(xué)生表達(dá)自己解決問(wèn)題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索,體驗(yàn)解決問(wèn)題策略的多樣性。

想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u(píng)價(jià)和鼓勵(lì)。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。

活動(dòng)2:

做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過(guò)程,加深對(duì)轉(zhuǎn)化思想的理解,通過(guò)增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過(guò)程,加深對(duì)轉(zhuǎn)化思想方法的理解,體會(huì)由簡(jiǎn)單到復(fù)雜,由特殊到一般的思想方法。

上節(jié)課我們學(xué)習(xí)了多邊形的對(duì)角線,我們來(lái)看對(duì)角線與多邊形的邊數(shù)和多邊形的內(nèi)角和之間有什么關(guān)系?

議一議:

問(wèn)題1:對(duì)比上面探究四邊形內(nèi)角和的過(guò)程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?

問(wèn)題2:能否采用不同的分割方法來(lái)解決這些問(wèn)題?

問(wèn)題3:n邊形的內(nèi)角和是多少?

活動(dòng)3:

想一想:采取表格的形式,首先請(qǐng)學(xué)生找出將多邊形分割成三角形的個(gè)數(shù),再根據(jù)三角形個(gè)數(shù)求出多邊形的內(nèi)角和。學(xué)生分組討論、歸納分析并展示自己發(fā)現(xiàn)的規(guī)律,要求用已“探究”的不同多邊形來(lái)有條理地發(fā)現(xiàn)和概括出多邊形的邊數(shù)與內(nèi)角和之間的關(guān)系,水到渠成地歸納、類比推出n邊形的內(nèi)角和公式,讓學(xué)生體會(huì)從特殊到一般的思考問(wèn)題的方法根據(jù)本組探究過(guò)程填寫下面表格的第二、三、四列,你能從中發(fā)現(xiàn)什么規(guī)律?

嘗試完成第五列n邊形的探究。

由于學(xué)生不熟悉完全歸納法,采取表格的形式使歸納更富條理性。為了讓學(xué)生更好的理解多邊形內(nèi)角和公式(n—2)×180°,我又鮮明的指出:N表示什么?

但是學(xué)生有可能出現(xiàn)其它的解決問(wèn)題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加180°。但是這種方法給活動(dòng)3公式的得出帶來(lái)困難。所以教師要因勢(shì)利導(dǎo),給學(xué)生正確的評(píng)價(jià)。在探索的過(guò)程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問(wèn)題的最佳方法的能力。

練一練:為了使學(xué)生達(dá)到對(duì)知識(shí)的鞏固與應(yīng)用,我特地設(shè)計(jì)了一組(5個(gè))即時(shí)搶答題,通過(guò)這些題目學(xué)生當(dāng)堂訓(xùn)練、獨(dú)立計(jì)算,并根據(jù)學(xué)生都喜好競(jìng)賽的特點(diǎn),采用搶答式完成。運(yùn)用所學(xué)公式解決問(wèn)題并鞏固、理解、記憶公式。

搶答:

(1)過(guò)一個(gè)多邊形一個(gè)頂點(diǎn)有10條對(duì)角線,則這是邊形。

(2)過(guò)一個(gè)多邊形一個(gè)頂點(diǎn)的所有對(duì)角線將這個(gè)多邊形分成五個(gè)三角形,則這是邊形。

(3)多邊形的內(nèi)角和隨著邊數(shù)的增加而,邊數(shù)增加一條時(shí)它的內(nèi)角和增加度。

(4)十二邊形的內(nèi)角和等于度。

(5)一個(gè)多邊形的內(nèi)角和等于720度,那么這個(gè)多邊形是邊形。

3、環(huán)節(jié)三:例題講解,知識(shí)鞏固

在此,我設(shè)計(jì)了2個(gè)例題,并對(duì)教科書上的例題作了較小的改動(dòng),書上的例1簡(jiǎn)略講解,這個(gè)例題就是對(duì)四邊形的內(nèi)角和的簡(jiǎn)單應(yīng)用,對(duì)于學(xué)生來(lái)說(shuō)比較簡(jiǎn)單;對(duì)于例2我把書后面的85頁(yè)習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識(shí)間的融會(huì)貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識(shí)。

4、環(huán)節(jié)四:分組競(jìng)賽、情感升華

(1)智慧大比拼

內(nèi)容:P87的練習(xí)分成2類。

通過(guò)新穎的形式激發(fā)學(xué)生的競(jìng)爭(zhēng)意識(shí)和主動(dòng)參與活動(dòng)的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識(shí)解決問(wèn)題,鞏固本節(jié)知識(shí)。

(2)拓展探究

內(nèi)容:用一把剪刀,將一張正方形卡片一個(gè)角截去,剩下的卡片是一個(gè)幾邊形?它的內(nèi)角和是多少?

小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵(lì)學(xué)生積極參與思考、大膽嘗試、主動(dòng)探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會(huì)成功的喜悅。

(3)情系世博

內(nèi)容:2010年5月1日世博會(huì)在上海拉開帷幕,小明為了紀(jì)念這一特殊年號(hào),他想用2010°設(shè)計(jì)一個(gè)多邊形,他的愿望能實(shí)現(xiàn)嗎?

引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛(ài)國(guó)之情。

5、環(huán)節(jié)五:暢所欲言、分享成果

請(qǐng)學(xué)生談自己學(xué)習(xí)過(guò)程中的收獲,并整理自己參與數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時(shí)也是給學(xué)生正確地評(píng)價(jià)自己和他人表現(xiàn)的機(jī)會(huì),這也是給教者本身一個(gè)反思提高的機(jī)會(huì)。通過(guò)這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識(shí)系統(tǒng)化,從感性認(rèn)識(shí)上升為理性認(rèn)識(shí)。

6、環(huán)節(jié)六:布置作業(yè)、課后提升

(1)習(xí)題7.3第2題、第4題。

(2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。

采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。

六、評(píng)價(jià)分析

評(píng)價(jià)學(xué)生,不僅僅是一個(gè)手段和結(jié)果,它對(duì)學(xué)生的人格、個(gè)性的發(fā)展有著極其重要的作用。新課程對(duì)課程的評(píng)價(jià)應(yīng)把握形成性、發(fā)展性評(píng)價(jià)和終結(jié)性評(píng)價(jià)相結(jié)合,在實(shí)踐中我打算在課堂上從以下幾個(gè)方面進(jìn)行評(píng)價(jià):

1、評(píng)價(jià)在學(xué)習(xí)中各種能力〈如表達(dá)、想象、動(dòng)手、思維、自學(xué)能力等〉的發(fā)展情況。

2、評(píng)價(jià)學(xué)習(xí)過(guò)程中的創(chuàng)新表現(xiàn)。

3、評(píng)價(jià)在學(xué)習(xí)過(guò)程中對(duì)身邊事物、社會(huì)現(xiàn)實(shí)的關(guān)注程度。

評(píng)價(jià)必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽(yù)感、自尊心和進(jìn)取心為目的,使其產(chǎn)生獲取成功的動(dòng)力。

七、說(shuō)板書設(shè)計(jì)

最后,我的板書設(shè)計(jì)力求簡(jiǎn)潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點(diǎn),及主要的思想方法。

板書設(shè)計(jì):

多邊形的內(nèi)角和

以上是我對(duì)本節(jié)課的設(shè)計(jì)說(shuō)明,從說(shuō)教材、說(shuō)學(xué)情、說(shuō)教法、說(shuō)學(xué)法、說(shuō)教學(xué)程序上說(shuō)明這節(jié)課“教什么”和“怎么教”,并且闡明了“為什么要這樣教。我的說(shuō)課到此結(jié)束,謝謝大家。

多邊形內(nèi)角和說(shuō)課稿(4)

(1)在一次數(shù)學(xué)基礎(chǔ)知識(shí)搶答賽上,王老師出了這么一個(gè)問(wèn)題:某個(gè)多邊形所有的角加起來(lái)等于它的外角和,那么該多邊形是幾邊形?小明同學(xué)僅用幾秒鐘就解決了問(wèn)題,你能嗎?

(2)(演示教具)用四塊大小形狀完全相同的四邊形可拼成一塊無(wú)空隙的紙板,你知道這是為什么嗎?

通過(guò)今天的學(xué)習(xí),我們就能明白其中的道理,引出課題。

這樣一開始就利用搶答賽問(wèn)題以及教具演示實(shí)驗(yàn)來(lái)提問(wèn)設(shè)疑,學(xué)生很容易發(fā)問(wèn):這個(gè)多邊形是幾邊形呢?用四塊大小形狀完全相同的四邊形可拼成一塊無(wú)空隙的紙板,為什么會(huì)產(chǎn)生這種效果呢?從而可調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣和注意力,創(chuàng)設(shè)恰當(dāng)?shù)慕虒W(xué)情境。

(1)問(wèn)題:三角形的內(nèi)角和等于多少度?外角和等于多少度?長(zhǎng)方形的內(nèi)角和等于多少度?正方形的內(nèi)角和等于多少度?

(2)問(wèn)題:任意四邊形的內(nèi)角和等于多少度呢?你是怎樣得到的?你能找到幾種方法?

(3)學(xué)生思考,并分組交流討論,教師深入小組參與活動(dòng),指導(dǎo)、傾聽(tīng)學(xué)生交流。

(4)學(xué)生分組選代表展示小組的探索成果,師生共同進(jìn)行評(píng)判,對(duì)學(xué)生找到的不同方法要加以及時(shí)肯定。

學(xué)生可能找到以下幾種方法:①“量”—即先測(cè)量四邊形四個(gè)內(nèi)角的度數(shù),然后求四個(gè)內(nèi)角的和;②“拼”—即把四邊形的四個(gè)內(nèi)角剪下來(lái),拼在一起,得到一個(gè)周角;③“分”—即通過(guò)添加輔助線的方法,把四邊形分割成三角形。

教師在學(xué)生展示完后提問(wèn):①在“量”、“拼”、“分”這幾種方法中,哪種方法操作簡(jiǎn)單又相對(duì)準(zhǔn)確?②我們剛才找到了幾種不同的輔助線的作法,它們的共同點(diǎn)是什么?

先回顧三角形、正方形和長(zhǎng)方形的內(nèi)角和,促使學(xué)生對(duì)新問(wèn)題進(jìn)行思考與猜想。

從簡(jiǎn)單的四邊形入手,讓學(xué)生親自操作尋求結(jié)論,易于引起學(xué)習(xí)興趣,鼓勵(lì)學(xué)生找到多種方法,讓學(xué)生體會(huì)多種分割形式,有利于深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——四邊形轉(zhuǎn)化為三角形,也讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索和解決問(wèn)題方法的多樣性。

通過(guò)交流,讓學(xué)生用自己的語(yǔ)言清楚地表達(dá)解決問(wèn)題的過(guò)程,可以提高語(yǔ)言表達(dá)能力

多邊形內(nèi)角和說(shuō)課稿(5)

各位領(lǐng)導(dǎo),各位老師:

大家下午好,很高興有機(jī)會(huì)參加這次教學(xué)研究活動(dòng)。

我的教學(xué)設(shè)計(jì)是華師大版七年級(jí)數(shù)學(xué)(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標(biāo)準(zhǔn),我從以下七個(gè)方面說(shuō)一下本節(jié)課的教學(xué)設(shè)想:

一、教材分析

從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,知識(shí)聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡(jiǎn)單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過(guò)程,發(fā)展了學(xué)生的合情推理能力。

二、學(xué)生情況

學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對(duì)內(nèi)角和的問(wèn)題有了一定的認(rèn)識(shí),加上七年級(jí)的學(xué)生具有好奇心,求知欲強(qiáng),互相評(píng)價(jià)互相提問(wèn)的積極性高。因此對(duì)于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。

三、教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)的確定

新的課程標(biāo)準(zhǔn)注重學(xué)生所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重學(xué)生經(jīng)歷觀察,操作,推理,想象等探索過(guò)程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)

【知識(shí)與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想

【過(guò)程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。

【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。

【教學(xué)重點(diǎn)】多邊形內(nèi)角和及外角和定理。

【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法。

四、教法和學(xué)法

本次課改很大程度上借鑒了美國(guó)教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動(dòng),希望通過(guò)活動(dòng)使學(xué)生主動(dòng)探索,實(shí)踐,交流,達(dá)到掌握知識(shí)的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動(dòng)課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。

【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動(dòng),有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動(dòng)探索,實(shí)踐,交流等活動(dòng)。

【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。

五、教學(xué)過(guò)程設(shè)計(jì)

整個(gè)教學(xué)過(guò)程分五步完成。

1、創(chuàng)設(shè)情景,引入新課

首先解決四邊形內(nèi)角的問(wèn)題,通過(guò)轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。

2,合作交流,探索新知。

更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到N邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。

3、歸納總結(jié),建構(gòu)體系。

多邊形內(nèi)角和已得出,對(duì)外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識(shí)體系。

4、實(shí)際應(yīng)用,提高能力。

"木工師傅可以用邊角余料鋪地板的原因是什么"這既是對(duì)本節(jié)所學(xué)知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用,又是本章第一節(jié)的延伸,同時(shí)也為下節(jié)打下了一個(gè)鋪墊。

5、分組競(jìng)賽,升華情感

四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識(shí),又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。

六、板書設(shè)計(jì)

板書本節(jié)課學(xué)生所需掌握的知識(shí)目標(biāo):即多邊形內(nèi)角和與外角和定理。

七、創(chuàng)意說(shuō)明

本節(jié)課在知識(shí)上由簡(jiǎn)單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問(wèn)題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問(wèn)題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競(jìng)賽活動(dòng),使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。

多邊形內(nèi)角和說(shuō)課稿(6)

人教版七年級(jí)數(shù)學(xué)《多邊形的內(nèi)角和》說(shuō)課稿范文

各位評(píng)委、各位老師:

大家好!我是來(lái)自錢場(chǎng)中學(xué)的陳芬老師。我說(shuō)課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書,七年級(jí)數(shù)學(xué)(下)第七章第三節(jié)《多邊形的內(nèi)角和》。

下面,我從以下幾個(gè)方面對(duì)本節(jié)課的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)明。

一、教材分析

1、教材的地位和作用

本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,再將內(nèi)角和公式應(yīng)用于平面鑲嵌,環(huán)環(huán)相扣,層層遞進(jìn),這樣編排易于激發(fā)學(xué)生的學(xué)習(xí)興趣,很適合學(xué)生的認(rèn)知特點(diǎn)。通過(guò)這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會(huì)從簡(jiǎn)單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

2、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):多邊形的內(nèi)角和與外角和

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

二、教學(xué)目標(biāo)分析

1、知識(shí)與技能:掌握多邊形的內(nèi)角和與外角和,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。

2、數(shù)學(xué)思考:能感受數(shù)學(xué)思考過(guò)程的'條理性,發(fā)展能力推理和語(yǔ)言表達(dá)能力,并體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

3、解決問(wèn)題:讓學(xué)生嘗試從不同的角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題。

4、情感態(tài)度:讓學(xué)生體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造。

三、教法和學(xué)法分析

本節(jié)課借鑒了美國(guó)教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:

1、教學(xué)方法的設(shè)計(jì)

我采用了探究式教學(xué)方法,整個(gè)探究學(xué)習(xí)的過(guò)程充滿了師生之間,生生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。

2、活動(dòng)的開展

利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

3、現(xiàn)代教育技術(shù)的應(yīng)用

我利用課件輔助教學(xué),適時(shí)呈現(xiàn)問(wèn)題情景,以豐富學(xué)生的感性認(rèn)識(shí),增強(qiáng)直觀效果,提高課堂效率。

四、教學(xué)過(guò)程分析

1、本節(jié)教學(xué)將按以下六個(gè)流程展開

多邊形內(nèi)角和說(shuō)課稿(7)

多邊形的內(nèi)角和說(shuō)課稿

一、 教材分析

1、教學(xué)內(nèi)容

“多邊形的內(nèi)角和”一節(jié)包括的內(nèi)容主要有多邊形的有關(guān)概念以及多邊形內(nèi)角和公式的推導(dǎo)和運(yùn)用。

2、本章及本節(jié)的地位與作用

本章《多邊形》,探索的是三角形和多邊形的有關(guān)概念和性質(zhì),是學(xué)生在上學(xué)期初步認(rèn)識(shí)和感受空間圖形之后的延伸,也為今后進(jìn)一步學(xué)習(xí)各種多邊形打好基礎(chǔ)。

本節(jié)課“多邊形的內(nèi)角和”作為本章的一個(gè)重點(diǎn),是三角形有關(guān)知識(shí)的拓展,學(xué)習(xí)四邊形的基礎(chǔ), 公式的運(yùn)用還充分地體現(xiàn)了圖形與客觀世界的密切聯(lián)系。

3、重點(diǎn)與難點(diǎn)

多邊形內(nèi)角和的公式及公式的推導(dǎo)和運(yùn)用是本節(jié)課的重點(diǎn); 因?yàn)楣降牡贸隹梢杂枚喾N不同的方法推導(dǎo), 所以我確定本節(jié)課的難點(diǎn)是如何引導(dǎo)學(xué)生通過(guò)自主學(xué)習(xí), 探索多邊形內(nèi)角和的公式。

二、教學(xué)目標(biāo)

根據(jù)新課程標(biāo)準(zhǔn)的要求,課改應(yīng)體現(xiàn)學(xué)生身心發(fā)展特點(diǎn);應(yīng)有利于引導(dǎo)學(xué)生主動(dòng)探索和發(fā)現(xiàn);有利于進(jìn)行創(chuàng)造性的教學(xué)。因此,我把本節(jié)課的教學(xué)目標(biāo)確定為以下三個(gè)方面:

知識(shí)目標(biāo):

① 識(shí)別多邊形的頂點(diǎn)、邊、內(nèi)角及對(duì)角線;

② 理解多邊形內(nèi)角和公式的推導(dǎo)過(guò)程;

③ 掌握多邊形內(nèi)角和公式的內(nèi)涵及其運(yùn)用。

能力目標(biāo):

① 培養(yǎng)學(xué)生類比歸納、轉(zhuǎn)化的能力;

② 培養(yǎng)學(xué)生觀察分析、猜想和概括的能力。

思想情感目標(biāo):

通過(guò)體會(huì)數(shù)學(xué)圖形的美感,提高審美能力, 樹立認(rèn)識(shí)數(shù)學(xué)來(lái)源于生活,又服務(wù)于實(shí)踐的觀點(diǎn)。

三、教法分析

在教法上樹立以學(xué)生為本的思想,通過(guò)創(chuàng)設(shè)問(wèn)題情境,啟發(fā)引導(dǎo)學(xué)生觀察----分析----猜想----概括,培養(yǎng)學(xué)生積極思考,勇于探索的精神,充分發(fā)揮其自主能動(dòng)性。

學(xué)法指導(dǎo)是培養(yǎng)學(xué)生學(xué)習(xí)能力的關(guān)鍵,本節(jié)課針對(duì)學(xué)生的認(rèn)知規(guī)律,指導(dǎo)他們動(dòng)手操作、交流合作,體驗(yàn)發(fā)現(xiàn)問(wèn)題、探索問(wèn)題和解決問(wèn)題的學(xué)習(xí)過(guò)程。

教學(xué)手段上采用多媒體輔助教學(xué),通過(guò)直觀演示,更好地實(shí)現(xiàn)了“數(shù)形結(jié)合”的教學(xué),切實(shí)有效地提高了課堂教學(xué)的效果。

四、過(guò)程設(shè)計(jì)

1、創(chuàng)設(shè)問(wèn)題情境,引入新課

我是這樣設(shè)計(jì)問(wèn)題的:

在一個(gè)平面內(nèi),把一個(gè)三角形的三個(gè)頂點(diǎn)固定,一邊套上橡皮筋往外拉成一條折線,該折線與三角形的另外兩邊圍成一個(gè)什么圖形?再把橡皮筋的一邊又往外拉,再固定, 又圍成什么圖形?……不斷地向外拉,結(jié)果圍成什么圖形?

如果上述情況不是往外拉而是往里推,那是什么圖形?

在學(xué)生的回答中引出主題:今天我們來(lái)學(xué)習(xí)多邊形的有關(guān)知識(shí).

(板書: 多邊形的內(nèi)角和)。

因?yàn)榍懊嬉呀?jīng)學(xué)過(guò)三角形的有關(guān)知識(shí), 從學(xué)生熟悉的情境入手引入新知識(shí), 更能引起學(xué)生的學(xué)習(xí)興趣, 啟發(fā)思考: 多邊形與三角形有什么密切的聯(lián)系呢? 滲透了互為轉(zhuǎn)化的思想。

2、新課學(xué)習(xí):

(1)基本概念

我把新課的引入過(guò)程作為本節(jié)課一條主線,各環(huán)節(jié)都圍繞著這條主線展開。

首先告訴學(xué)生:我們往外拉得到的這些圖形稱為凸多邊形,你能給往里推得到的多邊形起個(gè)名字嗎?怎樣區(qū)別這兩種圖形呢?把凹多邊形與凸多邊形從分割的角度來(lái)區(qū)別,指出暫時(shí)研究的只是凸多邊形。

幫助學(xué)生復(fù)習(xí)三角形的有關(guān)概念,類比得出四邊形、五邊形、… n邊形的定義,識(shí)別多邊形的頂點(diǎn)、邊及內(nèi)角,并會(huì)表示出一個(gè)多邊形。

引入特殊多邊形之前, 先欣賞生活中常見(jiàn)到的豐富多彩的圖案, 讓學(xué)生體會(huì)數(shù)學(xué)圖形的美,提高審美情趣. 稱這樣的'多邊形為正多邊形,說(shuō)明這種規(guī)則的、對(duì)稱的圖形非常重要,為下一節(jié)學(xué)習(xí)用正多邊形鋪設(shè)地板作好鋪墊。

在多邊形的對(duì)角線這一概念的認(rèn)識(shí)和理解上,應(yīng)突出它的作用,引導(dǎo)學(xué)生觀察、發(fā)現(xiàn),由于這種特殊的線段,把多邊形分割成了最基本的圖形——三角形,目的是為多邊形內(nèi)角和公式的推導(dǎo)埋下伏筆。

(2)知識(shí)探究

為了加深對(duì)概念的理解,領(lǐng)會(huì)其運(yùn)用,突出本節(jié)課的重點(diǎn)和難點(diǎn),同時(shí)體現(xiàn)新課程標(biāo)準(zhǔn)的精神實(shí)質(zhì), 在知識(shí)探究這一部分,我采取以下兩個(gè)探究活動(dòng)充分調(diào)動(dòng)全體學(xué)生主動(dòng)探索多邊形的內(nèi)角和公式:

探究活動(dòng)1:多邊形的對(duì)角線

先讓學(xué)生畫出四邊形、五邊形所有的對(duì)角線,再讓三個(gè)學(xué)生上黑板,分別畫出四邊形、五邊形、六邊形只從一個(gè)頂點(diǎn)出發(fā)引出的對(duì)角線,其余學(xué)生則在下面都畫出這三種情況,由動(dòng)腦到動(dòng)手,在操作中獲取知識(shí)。

思考并分小組討論以下兩個(gè)問(wèn)題:①?gòu)亩噙呅蔚囊粋€(gè)頂點(diǎn)出發(fā)能畫出幾條對(duì)角線?②這樣的畫法把多邊形分成了多少個(gè)三角形?

因?yàn)槎噙呅蝺?nèi)角和公式的推導(dǎo)就是從對(duì)角線和三角形入手的,因此,這兩個(gè)問(wèn)題就顯得尤其重要。引導(dǎo)學(xué)生回想課前引入的過(guò)程, 圖形的轉(zhuǎn)化中對(duì)角線有什么作用? 與邊數(shù)對(duì)比,發(fā)現(xiàn)什么變化規(guī)律,歸納總結(jié)出來(lái)。

探究活動(dòng)2:多邊形的內(nèi)角和

這既是本節(jié)課的重點(diǎn), 又是難點(diǎn), 能不能從以上對(duì)角線的問(wèn)題得到啟示呢? 為了緊緊扣住主題, 前后呼應(yīng). 我先提出問(wèn)題:三角形的內(nèi)角和等于多少度?

四邊形的內(nèi)角和呢?怎樣算出?有的學(xué)生可能會(huì)想到用量角器量一量, 或類似求三角形內(nèi)角和那樣剪下來(lái)拼一拼, 有的可能馬上就看出四邊形被一條對(duì)角線分成了兩個(gè)三角形, 它的內(nèi)角和就是2×180°……在肯定正確的答案和各種想法的同時(shí),讓學(xué)生尋找出最優(yōu)辦法。

多邊形內(nèi)角和說(shuō)課稿(8)

人教版七年級(jí)數(shù)學(xué)多邊形的內(nèi)角和說(shuō)課稿

各位評(píng)委、各位老師:

大家好!我是來(lái)自錢場(chǎng)中學(xué)的陳芬老師。我說(shuō)課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書,七年級(jí)數(shù)學(xué)(下)第七章第三節(jié)《多邊形的內(nèi)角和》。

下面,我從以下幾個(gè)方面對(duì)本節(jié)課的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)明。

一、教材分析

1、教材的地位和作用

本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,再將內(nèi)角和公式應(yīng)用于平面鑲嵌,環(huán)環(huán)相扣,層層遞進(jìn),這樣編排易于激發(fā)學(xué)生的學(xué)習(xí)興趣,很適合學(xué)生的.認(rèn)知特點(diǎn)。通過(guò)這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會(huì)從簡(jiǎn)單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

2、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):多邊形的內(nèi)角和與外角和

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

二、教學(xué)目標(biāo)分析

1、知識(shí)與技能:掌握多邊形的內(nèi)角和與外角和,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。

2、數(shù)學(xué)思考:能感受數(shù)學(xué)思考過(guò)程的條理性,發(fā)展能力推理和語(yǔ)言表達(dá)能力,并體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

3、解決問(wèn)題:讓學(xué)生嘗試從不同的角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題。

4、情感態(tài)度:讓學(xué)生體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造。

三、教法和學(xué)法分析

本節(jié)課借鑒了美國(guó)教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:

1、教學(xué)方法的設(shè)計(jì)

我采用了探究式教學(xué)方法,整個(gè)探究學(xué)習(xí)的過(guò)程充滿了師生之間,生生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。

2、活動(dòng)的開展

利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

3、現(xiàn)代教育技術(shù)的應(yīng)用

我利用課件輔助教學(xué),適時(shí)呈現(xiàn)問(wèn)題情景,以豐富學(xué)生的感性認(rèn)識(shí),增強(qiáng)直觀效果,提高課堂效率。

多邊形內(nèi)角和說(shuō)課稿(9)

《多邊形的內(nèi)角和與外角和》的說(shuō)課稿

各位領(lǐng)導(dǎo),各位老師大家下午好,很高興有機(jī)會(huì)參加這次教學(xué)研究活動(dòng)。

我的教學(xué)設(shè)計(jì)是華師大版七年級(jí)數(shù)學(xué)(下)第八章第三節(jié)"多邊形的內(nèi)角和與外角和"。根據(jù)新的課程標(biāo)準(zhǔn),我從以下七個(gè)方面說(shuō)一下本節(jié)課的教學(xué)設(shè)想:

一, 教材分析

從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,知識(shí)聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡(jiǎn)單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過(guò)程,發(fā)展了學(xué)生的合情推理能力。

二, 學(xué)生情況

學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對(duì)內(nèi)角和的問(wèn)題有了一定的認(rèn)識(shí),加上七年級(jí)的學(xué)生具有好奇心,求知欲強(qiáng),互相評(píng)價(jià)互相提問(wèn)的積極性高。因此對(duì)于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。

三, 教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)的確定

新的課程標(biāo)準(zhǔn)注重學(xué)生所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重學(xué)生經(jīng)歷觀察,操作,推理,想象等探索過(guò)程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)

【知識(shí)與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想

【過(guò)程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。

【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。

【教學(xué)重點(diǎn)】多邊形內(nèi)角和及外角和定理

【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法

四, 教法和學(xué)法

本次課改很大程度上借鑒了美國(guó)教育家杜威的'"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動(dòng),希望通過(guò)活動(dòng)使學(xué)生主動(dòng)探索,實(shí)踐,交流,達(dá)到掌握知識(shí)的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動(dòng)課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。

【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動(dòng),有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動(dòng)探索,實(shí)踐,交流等活動(dòng)。

【輔助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。

五, 教學(xué)過(guò)程設(shè)計(jì)

整個(gè)教學(xué)過(guò)程分五步完成。

1, 創(chuàng)設(shè)情景,引入新課

首先解決四邊形內(nèi)角的問(wèn)題,通過(guò)轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。

2,合作交流,探索新知。

更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到N邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。

3, 歸納總結(jié),建構(gòu)體系。

多邊形內(nèi)角和已得出,對(duì)外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識(shí)體系。

4, 實(shí)際應(yīng)用,提高能力。

"木工師傅可以用邊角余料鋪地板的原因是什么 "這既是對(duì)本節(jié)所學(xué)知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用,又是本章第一節(jié)的延伸,同時(shí)也為下節(jié)打下了一個(gè)鋪墊

5, 分組競(jìng)賽,升華情感

四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識(shí),又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。

六, 板書設(shè)計(jì)

板書本節(jié)課學(xué)生所需掌握的知識(shí)目標(biāo):即多邊形內(nèi)角和與外角和定理

七, 創(chuàng)意說(shuō)明

本節(jié)課在知識(shí)上由簡(jiǎn)單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問(wèn)題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問(wèn)題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競(jìng)賽活動(dòng),使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生。

多邊形內(nèi)角和說(shuō)課稿(10)

探索多邊形內(nèi)角和與外角和初二數(shù)學(xué)說(shuō)課稿

作為一名專為他人授業(yè)解惑的人民教師,有必要進(jìn)行細(xì)致的說(shuō)課稿準(zhǔn)備工作,說(shuō)課稿有助于提高教師的語(yǔ)言表達(dá)能力。那么應(yīng)當(dāng)如何寫說(shuō)課稿呢?以下是小編整理的探索多邊形內(nèi)角和與外角和初二數(shù)學(xué)說(shuō)課稿,希望對(duì)大家有所幫助。

一、學(xué)生起點(diǎn)分析

學(xué)生已經(jīng)學(xué)完三角形的內(nèi)角和,對(duì)內(nèi)角和的問(wèn)題有了一定的認(rèn)識(shí),加上八年級(jí)的學(xué)生好奇心、求知欲強(qiáng),互相評(píng)價(jià)、互相提問(wèn)的積極性高、因此對(duì)于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,所以把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。

二、教學(xué)任務(wù)分析

本節(jié)課是《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》北師大版八年級(jí)上冊(cè)第四章第六節(jié)《探索多邊形內(nèi)角和與外角和》的第一課時(shí)、本節(jié)內(nèi)容是七年級(jí)上冊(cè)多邊形相關(guān)知識(shí)的延展和升華,并且在探索學(xué)習(xí)過(guò)程中又與三角形相聯(lián)系,從三角形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了現(xiàn)實(shí)情境,“想一想”,“議一議”等內(nèi)容,體現(xiàn)了課改的精神、在編寫意圖上,編者強(qiáng)調(diào)使學(xué)生經(jīng)歷探索、猜想、歸納等過(guò)程,回歸多邊形的幾何特征,而不是硬背公式,發(fā)展了學(xué)生的合情推理能力。

三、教學(xué)目標(biāo)

【知識(shí)與技能】掌握多邊形內(nèi)角和定理,進(jìn)一步了解轉(zhuǎn)化的`數(shù)學(xué)思想。

【過(guò)程與方法】經(jīng)歷質(zhì)疑、猜想、歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法。

【情感態(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造。

四、教學(xué)重難

【教學(xué)重點(diǎn)】多邊形內(nèi)角和定理的探索和應(yīng)用。

【教學(xué)難點(diǎn)】多邊形定義的理解;多邊形內(nèi)角和公式的推導(dǎo);轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透。

五、教學(xué)過(guò)程設(shè)計(jì)

本節(jié)課分成七個(gè)環(huán)節(jié):

第一環(huán)節(jié):創(chuàng)設(shè)現(xiàn)實(shí)情境,提出問(wèn)題,引入新課;

第二環(huán)節(jié):概念形成;

第三環(huán)節(jié):實(shí)驗(yàn)探究;

第四環(huán)節(jié):思維升華;

第五環(huán)節(jié):能力拓展;

第六環(huán)節(jié):課時(shí)小結(jié);

第七環(huán)節(jié):布置作業(yè)。

第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實(shí)情境,提出問(wèn)題,引入新課。

1、多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無(wú)處不在的多邊形。

2、工人師傅鋸桌面:一個(gè)四邊形的桌面,用鋸子鋸掉一個(gè)角,還剩幾個(gè)角?

目的:

1、通過(guò)現(xiàn)實(shí)情境的展示,調(diào)動(dòng)學(xué)生的情緒,激發(fā)起進(jìn)一步學(xué)習(xí)的興趣。

2、把學(xué)生的注意力自然的引入研究方向,為課題的研究做鋪墊。

第二環(huán)節(jié)概念形成

1、借助多媒體顯示一多邊形,學(xué)生類比三角形的有關(guān)知識(shí)對(duì)多邊形定義、并表示出相應(yīng)的元素。

2、教師再給出嚴(yán)格規(guī)范的定義,特別借助學(xué)具說(shuō)明“在平面內(nèi)”的必要性、此外,說(shuō)明正多邊形的定義以及多邊形可分為凸多邊形和凹多邊形。

目的:

1、對(duì)于邊角這些能在圖形中識(shí)別而又不要求學(xué)生掌握的描述性定義,采取學(xué)生類比三角形的表示方法來(lái)歸納,滲透類比的數(shù)學(xué)思想。

2、借助于自制的直觀教具,說(shuō)明多邊形定義中“在平面內(nèi)”這一條件,易于學(xué)生理解,化解了難點(diǎn)。

【微語(yǔ)】高興在,生命中有你。悲傷在,有你的回憶中。

溫馨提示:
本文【多邊形內(nèi)角和說(shuō)課稿(推薦10篇)】由作者教培參考提供。該文觀點(diǎn)僅代表作者本人,培訓(xùn)啦系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)空間服務(wù),若存在侵權(quán)問(wèn)題,請(qǐng)及時(shí)聯(lián)系管理員或作者進(jìn)行刪除。
我們采用的作品包括內(nèi)容和圖片部分來(lái)源于網(wǎng)絡(luò)用戶投稿,我們不確定投稿用戶享有完全著作權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果侵犯了您的權(quán)利,請(qǐng)聯(lián)系我站將及時(shí)刪除。
內(nèi)容侵權(quán)、違法和不良信息舉報(bào)
Copyright @ 2025 培訓(xùn)啦 All Rights Reserved 版權(quán)所有.