教培參考
教育培訓(xùn)行業(yè)知識(shí)型媒體
發(fā)布時(shí)間: 2024年12月26日 14:10
在教學(xué)《正比例和反比例的復(fù)習(xí)》這一課時(shí),我就開門見山的向?qū)W生提問那誰來說說正比例和反比例之間的有什么區(qū)別和聯(lián)系?完成這張表格。出示小黑板。
正比例和反比例的比較:
讓學(xué)生通過觀察表格,總結(jié)出兩種比例關(guān)系下兩種量不同的變化規(guī)律,即另一方面的不同點(diǎn)。
在原來的教學(xué)設(shè)計(jì)中,我只是簡(jiǎn)單的安排了復(fù)習(xí),讓學(xué)生口述正反比例的意義,然后再讓學(xué)生做幾個(gè)判斷正反比例的題目,在實(shí)際上的過程中,我讓學(xué)生自己復(fù)習(xí)完成上面的表格。
目的有兩個(gè):
1、使一部分不能完整說出意義的后進(jìn)生有個(gè)清楚的再認(rèn)識(shí),達(dá)到鞏固舊知的教學(xué)目的。
2、為讓學(xué)生準(zhǔn)確說出兩者的不同點(diǎn)和相同點(diǎn)鋪設(shè)道路。學(xué)生常無法用準(zhǔn)確的語言總結(jié)兩者的聯(lián)系表達(dá)出來,所以這一小小的臨時(shí)改動(dòng)收到了良好的效果。
因此,個(gè)人認(rèn)為在以后的教學(xué)設(shè)計(jì)中,復(fù)習(xí)的設(shè)計(jì)也要多樣化,要把復(fù)習(xí)當(dāng)作新課一樣來加以修改、創(chuàng)新,讓復(fù)習(xí)課取得更好的教學(xué)效果。
數(shù)學(xué)來源于生活, 又服務(wù)于生活, 聯(lián)系生活實(shí)際創(chuàng)設(shè)問題情境, 是新課標(biāo)精神的體現(xiàn)。教學(xué)中, 我從創(chuàng)設(shè)生活數(shù)學(xué)問題入手, 進(jìn)入新課學(xué)習(xí), 在學(xué)生掌握新知的基礎(chǔ)上, 又回到問題情境的他訕, 同時(shí)還提供一個(gè)理具有綜合性、開放性的題目: “你能舉出一個(gè)正比例或反比例的例子嗎? 為什么? ”在學(xué)生能準(zhǔn)確由A X B = C 表示三量之間的比例關(guān)系后, 我又設(shè)計(jì)了這樣一個(gè)環(huán)節(jié): 請(qǐng)同學(xué)自己舉一些生活中較熟悉的三量關(guān)系, 說說它們之間存怎樣的關(guān)系, 再次回歸生活, 讓學(xué)生體驗(yàn)教學(xué)的價(jià)值, 這也是新課程教學(xué)理念――人人學(xué)有價(jià)值的數(shù)學(xué)。
教學(xué)中, 我尊重學(xué)生的的個(gè)性差異, 尊重學(xué)生的學(xué)習(xí)成果。如: 在學(xué)生知道了正、反比例的意義、關(guān)系式后, 我提出: “用你喜歡的方式喜歡的方式表示正、反比例的聯(lián)系和區(qū)別?!奔茸⒅亓丝茖W(xué)學(xué)習(xí)方法的滲透, 又尊重了學(xué)生的個(gè)性發(fā)展和學(xué)習(xí)成果。
練習(xí)與提高部分, 我打破了老師出示題目――自己完成――集體訂正的模式, 而是通過練習(xí)型課件, 讓學(xué)生自己判斷正確性, 既充分挖掘各省市畢業(yè)會(huì)考試題這一課題資源, 又通過“你真棒”、“你太聰明了”、“有點(diǎn)馬虎喲”、“要加把勁呀”、“要仔細(xì)呀”等鼓勵(lì)性的“語言”, 更大限度的激發(fā)學(xué)生的參與熱情, 讓不同的學(xué)生有不同層次的收獲與提高。
學(xué)習(xí)正比例和反比例,這部分知識(shí)比較抽象,學(xué)生一般不容易掌握,所以我在教學(xué)成正比例的量時(shí)放慢速度,把握重點(diǎn),主要讓學(xué)生明白以下幾個(gè)問題:
1、找準(zhǔn)兩個(gè)量是什么,弄明白這兩個(gè)量存在什么樣的數(shù)量關(guān)系;
2、讓學(xué)生明白怎樣才算是兩個(gè)量相關(guān)聯(lián)——即一個(gè)量變化,另一個(gè)量也隨之變化,多舉例子讓學(xué)生弄懂。
3、點(diǎn)明如果相關(guān)聯(lián)的兩個(gè)量的商或比值不變(即一定),那么這兩個(gè)量就是成正比例的量,它們的關(guān)系就是正比例關(guān)系。如果相關(guān)聯(lián)的兩個(gè)量的乘積不變(即一定),那么這兩個(gè)量就是成反比例的量,它們的關(guān)系就是反比例關(guān)系。
4、講解正反比例的圖像。剛開始每一題都卡著以上步驟走,讓學(xué)生漸漸地學(xué)會(huì)分析每一題的數(shù)量關(guān)系,這樣學(xué)下來,孩子掌握的還比較好。
上完課后,雖然看了聽課老師給我的評(píng)價(jià),但我一直在思考,學(xué)生是怎么評(píng)價(jià)的呢?在學(xué)生眼里,到底哪個(gè)地方出問題了呢?突然,靈機(jī)一動(dòng),干脆和學(xué)生一起交流一下吧,也許效果還更好呢?通過與學(xué)生交談,讓大家一起再次回顧本節(jié)課,找一找優(yōu)點(diǎn)和不足,學(xué)生的回答很是讓我驚奇,現(xiàn)摘錄如下:
優(yōu)點(diǎn):
1、課堂導(dǎo)入新穎、有趣、有效,結(jié)尾有所創(chuàng)新,改變了以前“通過本節(jié)課的學(xué)習(xí),大家有什么收獲呢?”等傳統(tǒng)方式,從而使得大家大家想學(xué)、樂學(xué);
2、老師講的詳細(xì),特別是講授兩種相關(guān)聯(lián)的量,用通俗、簡(jiǎn)單的語言讓大家一聽就明白了,并且很快就可以判斷出是否是兩種相關(guān)聯(lián)的量;
3、題目與現(xiàn)實(shí)生活聯(lián)系緊密,讓大家感覺學(xué)習(xí)數(shù)學(xué)很有用;
4、課堂上學(xué)生討論的時(shí)間充足,參與度較高,且時(shí)效性較強(qiáng);
5、課堂調(diào)控能力較強(qiáng),有自己的教學(xué)風(fēng)格;
6、板書明確、清晰,一目了然;
7、設(shè)計(jì)合理,處理偶發(fā)事件的能力較強(qiáng)。
缺點(diǎn):
1、課堂氣氛沒有以前活躍;
2、知識(shí)量太大,難度較大,很少有不經(jīng)過思考或稍作思考就能回答出來的問題;
3、小組合作時(shí),沒有分好工,導(dǎo)致在計(jì)算相對(duì)應(yīng)的每組數(shù)的和、差、積、商時(shí),每個(gè)同學(xué)都在計(jì)算,因而用的時(shí)間較多,如果四人小組分好工,沒人計(jì)算一種運(yùn)算,時(shí)間就會(huì)節(jié)約一半。
4、對(duì)學(xué)生的鼓勵(lì)性語言欠缺。
我們發(fā)現(xiàn)教材把比的認(rèn)識(shí)放到了六年級(jí)的上學(xué)期,學(xué)完了百分?jǐn)?shù)之后就認(rèn)識(shí)了比,而刪除了比例的意義和性質(zhì)、解比例以及應(yīng)用正反比應(yīng)用題。而只研究正反比例(圖片),加入了變化的量(圖片),畫一畫(圖片)、探究與發(fā)現(xiàn)(圖片),等內(nèi)容。
為什么加變化的量、畫一畫、探究與發(fā)現(xiàn)等內(nèi)容?
由困惑引發(fā)了我們的思考。通過學(xué)習(xí)和實(shí)踐我們有了下面的答案。
其一在《課標(biāo)》中,更強(qiáng)調(diào)了通過繪圖、估計(jì)值、找實(shí)例交流等不同于以往的教學(xué)活動(dòng),幫助學(xué)生體會(huì)、理解兩個(gè)變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,為以后念打下基礎(chǔ)。學(xué)生繪圖的過程可以說是他親身體驗(yàn)的過程,是他“經(jīng)歷運(yùn)用數(shù)學(xué)符號(hào)和圖形描述現(xiàn)實(shí)世界的過程”,只有親身的經(jīng)歷和體驗(yàn),才能給學(xué)生留下深刻的印象,真正體會(huì)、理解兩個(gè)變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,加深了對(duì)函數(shù)的認(rèn)識(shí)。多種研究也表明,為了有助于學(xué)生對(duì)函數(shù)思想的理解,應(yīng)使他們對(duì)函數(shù)的多種表示———數(shù)值表示(表格)、圖像表示、解析表示(關(guān)系式),有豐富的經(jīng)歷。在正比例、反比例的學(xué)習(xí)中,應(yīng)十分重視三種方式的結(jié)合。函數(shù)圖像更有利于學(xué)生直觀的理解變量的變化關(guān)系,并且利用規(guī)律解決問題,更好的進(jìn)行函數(shù)思想的滲透。這一點(diǎn)可以從課堂和課后的作業(yè)中找到答案。
其二為今后對(duì)函數(shù)進(jìn)一步的學(xué)習(xí)做準(zhǔn)備我們?cè)賮砜匆豢春瘮?shù)課程的發(fā)展鏈。
小學(xué):數(shù)的認(rèn)識(shí),圖形數(shù)量找規(guī)律,數(shù)的計(jì)算,圖形周長(zhǎng)和面積,字母表示數(shù)—變量,統(tǒng)計(jì)—變量,商不變的性質(zhì)—常函數(shù),正反比例—函數(shù)。
初中:一次函數(shù),二次函數(shù),正反比例函數(shù),函數(shù)概念的初步認(rèn)識(shí)。
高中:函數(shù)概念的映射定義。一些具體函數(shù)模型—簡(jiǎn)單冪函數(shù)及其拓展,實(shí)際函數(shù)的模型——分段函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù),數(shù)列,函數(shù)思想的廣泛應(yīng)用。
到了大學(xué)還在繼續(xù)著對(duì)函數(shù)的學(xué)習(xí),可以看出小學(xué)階段的只是對(duì)函數(shù)的最初級(jí)的最淺顯的認(rèn)識(shí),但卻影響著孩子今后對(duì)函數(shù)的學(xué)習(xí)。從多方面理解變化的量,打破了思維的局限,利于今后函數(shù)概念正確的建立。
這節(jié)課我談?wù)剛€(gè)人的觀點(diǎn):
本單元是在學(xué)生已學(xué)習(xí)了比和比例的知識(shí)以及積累了一些常用數(shù)量關(guān)系基礎(chǔ)上進(jìn)行教學(xué)的,正反比例這個(gè)知識(shí)對(duì)于學(xué)生來說是一個(gè)全新的知識(shí),也正好是規(guī)律探究的知識(shí),因此高老師嘗試用整體進(jìn)入的方式來進(jìn)行教學(xué)。主要讓學(xué)生結(jié)合實(shí)際情境認(rèn)識(shí)成正比例和反比例的量。通過學(xué)習(xí)這部分知識(shí),使學(xué)生從變量的角度來認(rèn)識(shí)兩個(gè)量之間的關(guān)系,從而初步體會(huì)函數(shù)的思想。教材的安排是用例1、例2教學(xué)正比例的意義和正比例的圖像,例3教學(xué)反比例的意義,而高老師第一課時(shí)并沒有進(jìn)行圖像教學(xué)。而是對(duì)教材大膽地進(jìn)行重組,第一課時(shí)進(jìn)行正、反比例意義的教學(xué),第二課時(shí)進(jìn)行正反比例圖像的教學(xué)。從意義和圖像兩方面進(jìn)行對(duì)比,用結(jié)構(gòu)的方式,加深學(xué)生對(duì)正反比例意義的理解。這節(jié)課高老師主要引導(dǎo)學(xué)生通過觀察分類自主探索、合作交流,呈現(xiàn)出學(xué)生“分類方法”的多樣化,在兩次“分類”中不斷激發(fā)學(xué)生探究?jī)煞N相關(guān)聯(lián)量變化規(guī)律。學(xué)生學(xué)的比較愉快。
探討的地方有:
1.在出現(xiàn)表格的.時(shí)候最好加上一個(gè)不是相關(guān)聯(lián)的量的表格讓學(xué)生進(jìn)行分類。如人的身高與體重等。這樣對(duì)比更明顯,讓學(xué)生知道不相關(guān)聯(lián)的兩個(gè)量要?dú)w類在不能成比例一類。
2.可以讓學(xué)生把一組組對(duì)應(yīng)的數(shù)據(jù)寫出來進(jìn)行對(duì)比,教師也可以板書這樣學(xué)生更能直觀的發(fā)現(xiàn)他們的比值一樣的.或乘積是一樣的,以便發(fā)現(xiàn)規(guī)律。
3.重心下移的力度不夠,規(guī)律可以讓多個(gè)學(xué)生嘗試歸納,然后教師可以指導(dǎo)學(xué)生看書得出規(guī)范性的數(shù)學(xué)語言。
4.教學(xué)中增加對(duì)比練習(xí)。
5.增加拓展練習(xí),抽象實(shí)際事例中的數(shù)量變化規(guī)律,加深正比例的概念的理解。
“正比例和反比例的意義”這部分內(nèi)容 著重使學(xué)生理解正反比例的意義。正、反比例關(guān)系是比較重要的一種數(shù)量關(guān)系,學(xué)生理解并掌握了這種數(shù)量關(guān)系,可以應(yīng)用它解決一些簡(jiǎn)單的正、反比例方面的實(shí)際問題。
在教學(xué)了正比例知識(shí)后,大部分學(xué)生都明白了如何判斷兩個(gè)量是不是正比例,在做題時(shí),學(xué)生出錯(cuò)的可能性不大,主要在于語言表達(dá)的完整性和科學(xué)性上。可是一旦教授了反比例的知識(shí)之后,學(xué)生開始混淆兩者了!不知道是把兩個(gè)量相“乘”還是相“除”!這是由于學(xué)生對(duì)于“正”和 “反”的理解不夠到位。
所謂的“正”,我們可以理解為:一個(gè)量變大,另一個(gè)量也隨著變大;一個(gè)量變小,另一個(gè)量也隨著變小??偠灾?,兩個(gè)量發(fā)生了相同的變化。那么反比例的“反”怎么理解呢?有的同學(xué)已經(jīng)可以自己概括了:兩個(gè)量發(fā)生了不同的變化,即一個(gè)變大另一個(gè)就隨著變小;一個(gè)變小另一個(gè)就隨著變大。這樣的講解可以使學(xué)生掌握可靠的、初步判斷兩個(gè)量可能成什么比例的方法,有助于有序思維的展開!
我們發(fā)現(xiàn)教材把比的認(rèn)識(shí)放到了六年級(jí)的上學(xué)期,學(xué)完了百分?jǐn)?shù)之后就認(rèn)識(shí)了比,而刪除了比例的意義和性質(zhì)、解比例以及應(yīng)用正反比應(yīng)用題。而只研究正反比例(圖片),加入了變化的量(圖片),、畫一畫(圖片)、探究與發(fā)現(xiàn)(圖片),等內(nèi)容。
為什么加變化的量、畫一畫、探究與發(fā)現(xiàn)等內(nèi)容?
由困惑引發(fā)了我們的思考。通過學(xué)習(xí)和實(shí)踐我們有了下面的答案。
其一在《課標(biāo)》中,更強(qiáng)調(diào)了通過繪圖、估計(jì)值、找實(shí)例交流等不同于以往的教學(xué)活動(dòng),幫助學(xué)生體會(huì)、理解兩個(gè)變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,為以后念打下基礎(chǔ)。學(xué)生繪圖的過程可以說是他親身體驗(yàn)的過程,是他“經(jīng)歷運(yùn)用數(shù)學(xué)符號(hào)和圖形描述現(xiàn)實(shí)世界的過程”,只有親身的經(jīng)歷和體驗(yàn),才能給學(xué)生留下深刻的印象,真正體會(huì)、理解兩個(gè)變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,加深了對(duì)函數(shù)的認(rèn)識(shí)。多種研究也表明,為了有助于學(xué)生對(duì)函數(shù)思想的理解,應(yīng)使他們對(duì)函數(shù)的多種表示———數(shù)值表示(表格)、圖像表示、解析表示(關(guān)系式),有豐富的經(jīng)歷。在正比例、反比例的學(xué)習(xí)中,應(yīng)十分重視三種方式的結(jié)合。函數(shù)圖像更有利于學(xué)生直觀的理解變量的變化關(guān)系,并且利用規(guī)律解決問題,更好的進(jìn)行函數(shù)思想的滲透。這一點(diǎn)可以從課堂和課后的作業(yè)中找到答案。
其二為今后對(duì)函數(shù)進(jìn)一步的學(xué)習(xí)做準(zhǔn)備我們?cè)賮砜匆豢春瘮?shù)課程的發(fā)展鏈。
小學(xué):數(shù)的認(rèn)識(shí),圖形數(shù)量找規(guī)律,數(shù)的計(jì)算,圖形周長(zhǎng)和面積,字母表示數(shù)—變量,統(tǒng)計(jì)—變量,商不變的性質(zhì)—常函數(shù),正反比例—函數(shù)。
初中:一次函數(shù),二次函數(shù),正反比例函數(shù),函數(shù)概念的初步認(rèn)識(shí)。
高中:函數(shù)概念的映射定義。一些具體函數(shù)模型—簡(jiǎn)單冪函數(shù)及其拓展,實(shí)際函數(shù)的模型——分段函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù),數(shù)列,函數(shù)思想的廣泛應(yīng)用。
到了大學(xué)還在繼續(xù)著對(duì)函數(shù)的學(xué)習(xí),可以看出小學(xué)階段的只是對(duì)函數(shù)的最初級(jí)的最淺顯的認(rèn)識(shí),但卻影響著孩子今后對(duì)函數(shù)的學(xué)習(xí)。從多方面理解變化的量,打破了思維的局限,利于今后函數(shù)概念正確的建立。
這節(jié)課我談?wù)剛€(gè)人的觀點(diǎn):
本單元是在學(xué)生已學(xué)習(xí)了比和比例的知識(shí)以及積累了一些常用數(shù)量關(guān)系基礎(chǔ)上進(jìn)行教學(xué)的,正反比例這個(gè)知識(shí)對(duì)于學(xué)生來說是一個(gè)全新的知識(shí),也正好是規(guī)律探究的知識(shí),因此高老師嘗試用整體進(jìn)入的方式來進(jìn)行教學(xué)。主要讓學(xué)生結(jié)合實(shí)際情境認(rèn)識(shí)成正比例和反比例的量。通過學(xué)習(xí)這部分知識(shí),使學(xué)生從變量的角度來認(rèn)識(shí)兩個(gè)量之間的關(guān)系,從而初步體會(huì)函數(shù)的思想。教材的安排是用例1、例2教學(xué)正比例的意義和正比例的圖像,例3教學(xué)反比例的意義,而高老師第一課時(shí)并沒有進(jìn)行圖像教學(xué)。而是對(duì)教材大膽地進(jìn)行重組,第一課時(shí)進(jìn)行正、反比例意義的教學(xué),第二課時(shí)進(jìn)行正反比例圖像的教學(xué)。從意義和圖像兩方面進(jìn)行對(duì)比,用結(jié)構(gòu)的方式,加深學(xué)生對(duì)正反比例意義的理解。這節(jié)課高老師主要引導(dǎo)學(xué)生通過觀察分類自主探索、合作交流,呈現(xiàn)出學(xué)生“分類方法”的多樣化,在兩次“分類”中不斷激發(fā)學(xué)生探究?jī)煞N相關(guān)聯(lián)量變化規(guī)律。學(xué)生學(xué)的比較愉快。
探討的地方有:
1.在出現(xiàn)表格的時(shí)候最好加上一個(gè)不是相關(guān)聯(lián)的量的表格讓學(xué)生進(jìn)行分類。如人的`身高與體重等。這樣對(duì)比更明顯,讓學(xué)生知道不相關(guān)聯(lián)的兩個(gè)量要?dú)w類在不能成比例一類,
2.可以讓學(xué)生把一組組對(duì)應(yīng)的數(shù)據(jù)寫出來進(jìn)行對(duì)比,教師也可以板書這樣學(xué)生更能直觀的發(fā)現(xiàn)他們的比值一樣的.或乘積是一樣的,以便發(fā)現(xiàn)規(guī)律.
3.重心下移的力度不夠,規(guī)律可以讓多個(gè)學(xué)生嘗試歸納,然后教師可以指導(dǎo)學(xué)生看書得出規(guī)范性的數(shù)學(xué)語言.
4.教學(xué)中增加對(duì)比練習(xí)
5.增加拓展練習(xí),抽象實(shí)際事例中的數(shù)量變化規(guī)律,加深正比例的概念的理解。
這幾天學(xué)習(xí)了正比例反比例,從學(xué)生掌握情況來看,對(duì)于“正比例和反比例的意義”這部分內(nèi)容學(xué)生理解并掌握了這種數(shù)量關(guān)系,可以應(yīng)用它解決一些簡(jiǎn)單的正、反比例方面的實(shí)際問題。
生活是數(shù)學(xué)知識(shí)的源泉,正反比例是來源于生活的,我認(rèn)為教學(xué)中既要重視這一點(diǎn),又要注重知識(shí)體系的形成中邏輯性,嚴(yán)密性與連貫性的統(tǒng)一。因此,在處理教材時(shí),沒用教材的例子,而是舉的學(xué)生熟悉的生活例子找規(guī)律,再由規(guī)律回歸生活。這樣一節(jié)課的40分鐘質(zhì)量很高。教學(xué)中,我從創(chuàng)設(shè)生活數(shù)學(xué)問題入手,進(jìn)入新課學(xué)習(xí),在學(xué)生掌握新知的基礎(chǔ)上,提供一個(gè)具有綜合性、開放性的題目:“你能舉出一個(gè)正比例或反比例的例子嗎?為什么?”在學(xué)生能準(zhǔn)確由
AXB=C(一定)表示三量之間的比例關(guān)系后,我又設(shè)計(jì)了這樣一個(gè)環(huán)節(jié):請(qǐng)同學(xué)自己舉一些生活中較熟悉的三量關(guān)系,說說它們之間存怎樣的關(guān)系,再次回歸生活,讓學(xué)生體驗(yàn)教學(xué)的價(jià)值,這也是新課程教學(xué)理念――人人學(xué)有價(jià)值的數(shù)學(xué)。
教學(xué)中,我尊重學(xué)生的的個(gè)性差異,尊重學(xué)生的學(xué)習(xí)成果。如:在學(xué)生知道了正、反比例的意義、關(guān)系式后,我提出:“用你喜歡的方式表示正、反比例的聯(lián)系和區(qū)別?!奔茸⒅亓丝茖W(xué)學(xué)習(xí)方法的滲透,又尊重了學(xué)生的個(gè)性發(fā)展和學(xué)習(xí)成果。
在教學(xué)了正比例了知識(shí)后,大部分學(xué)生都明白了如何判斷兩個(gè)量是不是正比例,在做相關(guān)的題目時(shí),學(xué)生出錯(cuò)的可能性不大,主要在于語言表達(dá)的完整性和科學(xué)性上??墒且坏┙淌诹朔幢壤闹R(shí)之后,學(xué)生開始混淆兩者了!不知道是把兩個(gè)量相“乘”還是相“除”!這在某種意義上來說是由于學(xué)生對(duì)于“正”和“反”的理解不夠到位。
所謂的“正”,我們可以理解為:一個(gè)量變大,另一個(gè)量也隨著變大;一個(gè)量變小,另一個(gè)量也隨著變小??偠灾?,兩個(gè)量發(fā)生了相同的變化。那么反比例的“反”怎么理解呢?有的同學(xué)已經(jīng)可以自己概括了:兩個(gè)量發(fā)生了不同的變化,即一個(gè)變大另一個(gè)就隨著變?。灰粋€(gè)變小另一個(gè)就隨著變大。這樣的講解可以使學(xué)生掌握可靠的、初步判斷兩個(gè)量可能成什么比例的方法,有助于有序思維的展開!
另外我們還可以結(jié)合圖像,我們也可以很清楚的將兩者區(qū)分開來!正比例的圖像是一條直線(直線過原點(diǎn),并且方向向上),反比例的圖像則是一條彎彎的曲線(在教師的輔助下,學(xué)生用描點(diǎn)的方法畫出圖像)。
課上學(xué)生基本能夠正確判斷,說理也較清楚。但是在課后作業(yè)中,發(fā)現(xiàn)了不少問題,對(duì)一些不是很熟悉的關(guān)系如:車輪的`直徑一定,所行使的路程和車輪的轉(zhuǎn)數(shù)成何比例?出粉率一定,面粉重量和小麥的總重量成何比例?學(xué)生在判斷時(shí)較為困難,說理也不是很清楚??赡苓@是學(xué)生先前概念理解不夠深的緣故吧!以后在教學(xué)這些概念時(shí),應(yīng)該有前瞻性,引導(dǎo)學(xué)生對(duì)以前所學(xué)的知識(shí)進(jìn)行相關(guān)的復(fù)習(xí),然后在進(jìn)行相關(guān)形式的練習(xí),我想對(duì)學(xué)生的后繼學(xué)習(xí)必然有所幫助。
教學(xué)有法,但教無定法,貴在得法,我認(rèn)為只要切合學(xué)生實(shí)際的,讓師生花最短的時(shí)間獲得最大的學(xué)習(xí)效益的方法都是成功的,都是有價(jià)值的,我以后會(huì)大膽嘗試,努力創(chuàng)造民主和諧、輕松愉悅、積極上進(jìn),共同發(fā)展的新課堂吧!
上完課后,雖然看了聽課老師給我的評(píng)價(jià),但我一直在思考,學(xué)生是怎么評(píng)價(jià)的呢?在學(xué)生眼里,到底哪個(gè)地方出問題了呢?突然,靈機(jī)一動(dòng),干脆和學(xué)生一起交流一下吧,也許效果還更好呢?通過與學(xué)生交談,讓大家一起再次回顧本節(jié)課,找一找優(yōu)點(diǎn)和不足,學(xué)生的回答很是讓我驚奇,現(xiàn)摘錄如下:
優(yōu)點(diǎn):
1、課堂導(dǎo)入新穎、有趣、有效,結(jié)尾有所創(chuàng)新,改變了以前“通過本節(jié)課的學(xué)習(xí),大家有什么收獲呢?”等傳統(tǒng)方式,從而使得大家大家想學(xué)、樂學(xué);
2、老師講的詳細(xì),特別是講授兩種相關(guān)聯(lián)的量,用通俗、簡(jiǎn)單的語言讓大家一聽就明白了,并且很快就可以判斷出是否是兩種相關(guān)聯(lián)的'量;
3、題目與現(xiàn)實(shí)生活聯(lián)系緊密,讓大家感覺學(xué)習(xí)數(shù)學(xué)很有用;
4、課堂上學(xué)生討論的時(shí)間充足,參與度較高,且時(shí)效性較強(qiáng);
5、課堂調(diào)控能力較強(qiáng),有自己的教學(xué)風(fēng)格;
6、板書明確、清晰,一目了然;
7、設(shè)計(jì)合理,處理偶發(fā)事件的能力較強(qiáng)。
缺點(diǎn):
1、課堂氣氛沒有以前活躍;
2、知識(shí)量太大,難度較大,很少有不經(jīng)過思考或稍作思考就能回答出來的問題;
3、小組合作時(shí),沒有分好工,導(dǎo)致在計(jì)算相對(duì)應(yīng)的每組數(shù)的和、差、積、商時(shí),每個(gè)同學(xué)都在計(jì)算,因而用的時(shí)間較多,如果四人小組分好工,沒人計(jì)算一種運(yùn)算,時(shí)間就會(huì)節(jié)約一半。
4、對(duì)學(xué)生的鼓勵(lì)性語言欠缺。
我們發(fā)現(xiàn)教材把比的認(rèn)識(shí)放到了六年級(jí)的上學(xué)期,學(xué)完了百分?jǐn)?shù)之后就認(rèn)識(shí)了比,而刪除了比例的意義和性質(zhì)、解比例以及應(yīng)用正反比應(yīng)用題。而只研究正反比例(圖片),加入了變化的量(圖片),、畫一畫(圖片)、探究與發(fā)現(xiàn)(圖片),等內(nèi)容。
為什么加變化的量、畫一畫、探究與發(fā)現(xiàn)等內(nèi)容?
由困惑引發(fā)了我們的思考。通過學(xué)習(xí)和實(shí)踐我們有了下面的答案。
其一在《課標(biāo)》中,更強(qiáng)調(diào)了通過繪圖、估計(jì)值、找實(shí)例交流等不同于以往的教學(xué)活動(dòng),幫助學(xué)生體會(huì)、理解兩個(gè)變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,為以后念打下基礎(chǔ)。學(xué)生繪圖的過程可以說是他親身體驗(yàn)的過程,是他“經(jīng)歷運(yùn)用數(shù)學(xué)符號(hào)和圖形描述現(xiàn)實(shí)世界的過程”,只有親身的經(jīng)歷和體驗(yàn),才能給學(xué)生留下深刻的印象,真正體會(huì)、理解兩個(gè)變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,加深了對(duì)函數(shù)的認(rèn)識(shí)。多種研究也表明,為了有助于學(xué)生對(duì)函數(shù)思想的理解,應(yīng)使他們對(duì)函數(shù)的多種表示———數(shù)值表示(表格)、圖像表示、解析表示(關(guān)系式),有豐富的經(jīng)歷。在正比例、反比例的學(xué)習(xí)中,應(yīng)十分重視三種方式的結(jié)合。函數(shù)圖像更有利于學(xué)生直觀的理解變量的變化關(guān)系,并且利用規(guī)律解決問題,更好的進(jìn)行函數(shù)思想的'滲透。這一點(diǎn)可以從課堂和課后的作業(yè)中找到答案。
其二為今后對(duì)函數(shù)進(jìn)一步的學(xué)習(xí)做準(zhǔn)備我們?cè)賮砜匆豢春瘮?shù)課程的發(fā)展鏈。
小學(xué):數(shù)的認(rèn)識(shí),圖形數(shù)量找規(guī)律,數(shù)的計(jì)算,圖形周長(zhǎng)和面積,字母表示數(shù)—變量,統(tǒng)計(jì)—變量,商不變的性質(zhì)—常函數(shù),正反比例—函數(shù)。
初中:一次函數(shù),二次函數(shù),正反比例函數(shù),函數(shù)概念的初步認(rèn)識(shí)。
高中:函數(shù)概念的映射定義。一些具體函數(shù)模型—簡(jiǎn)單冪函數(shù)及其拓展,實(shí)際函數(shù)的模型——分段函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù),數(shù)列,函數(shù)思想的廣泛應(yīng)用。
到了大學(xué)還在繼續(xù)著對(duì)函數(shù)的學(xué)習(xí),可以看出小學(xué)階段的只是對(duì)函數(shù)的最初級(jí)的最淺顯的認(rèn)識(shí),但卻影響著孩子今后對(duì)函數(shù)的學(xué)習(xí)。從多方面理解變化的量,打破了思維的局限,利于今后函數(shù)概念正確的建立。
這節(jié)課我談?wù)剛€(gè)人的觀點(diǎn):
本單元是在學(xué)生已學(xué)習(xí)了比和比例的知識(shí)以及積累了一些常用數(shù)量關(guān)系基礎(chǔ)上進(jìn)行教學(xué)的,正反比例這個(gè)知識(shí)對(duì)于學(xué)生來說是一個(gè)全新的知識(shí),也正好是規(guī)律探究的知識(shí),因此高老師嘗試用整體進(jìn)入的方式來進(jìn)行教學(xué)。主要讓學(xué)生結(jié)合實(shí)際情境認(rèn)識(shí)成正比例和反比例的量。通過學(xué)習(xí)這部分知識(shí),使學(xué)生從變量的角度來認(rèn)識(shí)兩個(gè)量之間的關(guān)系,從而初步體會(huì)函數(shù)的思想。教材的安排是用例1、例2教學(xué)正比例的意義和正比例的圖像,例3教學(xué)反比例的意義,而高老師第一課時(shí)并沒有進(jìn)行圖像教學(xué)。而是對(duì)教材大膽地進(jìn)行重組,第一課時(shí)進(jìn)行正、反比例意義的教學(xué),第二課時(shí)進(jìn)行正反比例圖像的教學(xué)。從意義和圖像兩方面進(jìn)行對(duì)比,用結(jié)構(gòu)的方式,加深學(xué)生對(duì)正反比例意義的理解。這節(jié)課高老師主要引導(dǎo)學(xué)生通過觀察分類自主探索、合作交流,呈現(xiàn)出學(xué)生“分類方法”的多樣化,在兩次“分類”中不斷激發(fā)學(xué)生探究?jī)煞N相關(guān)聯(lián)量變化規(guī)律。學(xué)生學(xué)的比較愉快。
探討的地方有:
1、在出現(xiàn)表格的時(shí)候最好加上一個(gè)不是相關(guān)聯(lián)的量的表格讓學(xué)生進(jìn)行分類。如人的身高與體重等。這樣對(duì)比更明顯,讓學(xué)生知道不相關(guān)聯(lián)的兩個(gè)量要?dú)w類在不能成比例一類,
2、可以讓學(xué)生把一組組對(duì)應(yīng)的數(shù)據(jù)寫出來進(jìn)行對(duì)比,教師也可以板書這樣學(xué)生更能直觀的發(fā)現(xiàn)他們的比值一樣的、或乘積是一樣的,以便發(fā)現(xiàn)規(guī)律、
3、重心下移的力度不夠,規(guī)律可以讓多個(gè)學(xué)生嘗試歸納,然后教師可以指導(dǎo)學(xué)生看書得出規(guī)范性的數(shù)學(xué)語言、
4、教學(xué)中增加對(duì)比練習(xí)
5、增加拓展練習(xí),抽象實(shí)際事例中的數(shù)量變化規(guī)律,加深正比例的概念的理解。
數(shù)學(xué)課程《正比例和反比例》教學(xué)反思
我們發(fā)現(xiàn)教材把比的認(rèn)識(shí)放到了六年級(jí)的上學(xué)期,學(xué)完了百分?jǐn)?shù)之后就認(rèn)識(shí)了比,而刪除了比例的意義和性質(zhì)、解比例以及應(yīng)用正反比應(yīng)用題。而只研究正反比例(圖片),加入了變化的量(圖片),畫一畫(圖片)、探究與發(fā)現(xiàn)(圖片),等內(nèi)容。
為什么加變化的量、畫一畫、探究與發(fā)現(xiàn)等內(nèi)容?
由困惑引發(fā)了我們的思考。通過學(xué)習(xí)和實(shí)踐我們有了下面的答案。
其一在《課標(biāo)》中,更強(qiáng)調(diào)了通過繪圖、估計(jì)值、找實(shí)例交流等不同于以往的教學(xué)活動(dòng),幫助學(xué)生體會(huì)、理解兩個(gè)變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,為以后念打下基礎(chǔ)。學(xué)生繪圖的過程可以說是他親身體驗(yàn)的過程,是他“經(jīng)歷運(yùn)用數(shù)學(xué)符號(hào)和圖形描述現(xiàn)實(shí)世界的過程”,只有親身的經(jīng)歷和體驗(yàn),才能給學(xué)生留下深刻的印象,真正體會(huì)、理解兩個(gè)變量之間相互依存的關(guān)系,豐富了關(guān)于變量的經(jīng)歷,加深了對(duì)函數(shù)的認(rèn)識(shí)。多種研究也表明,為了有助于學(xué)生對(duì)函數(shù)思想的`理解,應(yīng)使他們對(duì)函數(shù)的多種表示———數(shù)值表示(表格)、圖像表示、解析表示(關(guān)系式),有豐富的經(jīng)歷。在正比例、反比例的學(xué)習(xí)中,應(yīng)十分重視三種方式的結(jié)合。函數(shù)圖像更有利于學(xué)生直觀的理解變量的變化關(guān)系,并且利用規(guī)律解決問題,更好的進(jìn)行函數(shù)思想的滲透。這一點(diǎn)可以從課堂和課后的作業(yè)中找到答案。
其二為今后對(duì)函數(shù)進(jìn)一步的學(xué)習(xí)做準(zhǔn)備我們?cè)賮砜匆豢春瘮?shù)課程的發(fā)展鏈。
小學(xué):數(shù)的認(rèn)識(shí),圖形數(shù)量找規(guī)律,數(shù)的計(jì)算,圖形周長(zhǎng)和面積,字母表示數(shù)—變量,統(tǒng)計(jì)—變量,商不變的性質(zhì)—常函數(shù),正反比例—函數(shù)。
初中:一次函數(shù),二次函數(shù),正反比例函數(shù),函數(shù)概念的初步認(rèn)識(shí)。
高中:函數(shù)概念的映射定義。一些具體函數(shù)模型—簡(jiǎn)單冪函數(shù)及其拓展,實(shí)際函數(shù)的模型——分段函數(shù),指數(shù)函數(shù),對(duì)數(shù)函數(shù),三角函數(shù),數(shù)列,函數(shù)思想的廣泛應(yīng)用。
到了大學(xué)還在繼續(xù)著對(duì)函數(shù)的學(xué)習(xí),可以看出小學(xué)階段的只是對(duì)函數(shù)的最初級(jí)的最淺顯的認(rèn)識(shí),但卻影響著孩子今后對(duì)函數(shù)的學(xué)習(xí)。從多方面理解變化的量,打破了思維的局限,利于今后函數(shù)概念正確的建立。
這節(jié)課我談?wù)剛€(gè)人的觀點(diǎn):
本單元是在學(xué)生已學(xué)習(xí)了比和比例的知識(shí)以及積累了一些常用數(shù)量關(guān)系基礎(chǔ)上進(jìn)行教學(xué)的,正反比例這個(gè)知識(shí)對(duì)于學(xué)生來說是一個(gè)全新的知識(shí),也正好是規(guī)律探究的知識(shí),因此高老師嘗試用整體進(jìn)入的方式來進(jìn)行教學(xué)。主要讓學(xué)生結(jié)合實(shí)際情境認(rèn)識(shí)成正比例和反比例的量。通過學(xué)習(xí)這部分知識(shí),使學(xué)生從變量的角度來認(rèn)識(shí)兩個(gè)量之間的關(guān)系,從而初步體會(huì)函數(shù)的思想。教材的安排是用例1、例2教學(xué)正比例的意義和正比例的圖像,例3教學(xué)反比例的意義,而高老師第一課時(shí)并沒有進(jìn)行圖像教學(xué)。而是對(duì)教材大膽地進(jìn)行重組,第一課時(shí)進(jìn)行正、反比例意義的教學(xué),第二課時(shí)進(jìn)行正反比例圖像的教學(xué)。從意義和圖像兩方面進(jìn)行對(duì)比,用結(jié)構(gòu)的方式,加深學(xué)生對(duì)正反比例意義的理解。這節(jié)課高老師主要引導(dǎo)學(xué)生通過觀察分類自主探索、合作交流,呈現(xiàn)出學(xué)生“分類方法”的多樣化,在兩次“分類”中不斷激發(fā)學(xué)生探究?jī)煞N相關(guān)聯(lián)量變化規(guī)律。學(xué)生學(xué)的比較愉快。
探討的地方有:
1.在出現(xiàn)表格的時(shí)候最好加上一個(gè)不是相關(guān)聯(lián)的量的表格讓學(xué)生進(jìn)行分類。如人的身高與體重等。這樣對(duì)比更明顯,讓學(xué)生知道不相關(guān)聯(lián)的兩個(gè)量要?dú)w類在不能成比例一類。
2.可以讓學(xué)生把一組組對(duì)應(yīng)的數(shù)據(jù)寫出來進(jìn)行對(duì)比,教師也可以板書這樣學(xué)生更能直觀的發(fā)現(xiàn)他們的比值一樣的.或乘積是一樣的,以便發(fā)現(xiàn)規(guī)律.
3.重心下移的力度不夠,規(guī)律可以讓多個(gè)學(xué)生嘗試歸納,然后教師可以指導(dǎo)學(xué)生看書得出規(guī)范性的數(shù)學(xué)語言.
4.教學(xué)中增加對(duì)比練習(xí)
5.增加拓展練習(xí),抽象實(shí)際事例中的數(shù)量變化規(guī)律,加深正比例的概念的理解。
六年級(jí)數(shù)學(xué)下冊(cè)人教版《正比例和反比例的意義》第12冊(cè)教學(xué)反思
本堂課是在學(xué)生學(xué)習(xí)了正比例的基礎(chǔ)上學(xué)習(xí)反比例,由于學(xué)生有了前面學(xué)習(xí)正比例的基礎(chǔ),加上正比例與反比例在意義上研究的時(shí)候存在有一定的共性,因此學(xué)生在整堂課的學(xué)習(xí)上與前面學(xué)習(xí)的正比例相比有明顯的提高,而且在課時(shí)的安排上,在學(xué)習(xí)正比例的安排了2個(gè)課時(shí),這里只是安排了1個(gè)課時(shí),緊隨著課之后教材安排了一堂正反比例比較、綜合的一堂課,對(duì)學(xué)生在出現(xiàn)正反比例有點(diǎn)模糊的時(shí)候就及時(shí)地加以糾正。
反比例關(guān)系和正比例關(guān)系一樣,是比較重要的一種數(shù)量關(guān)系,學(xué)生理解并掌握了這種數(shù)量關(guān)系,可以加深對(duì)比例的理解,并能應(yīng)用它解決一些簡(jiǎn)單的正、反比例方面的實(shí)際問題。同時(shí)通過反比例的教學(xué),可以進(jìn)一步滲透函數(shù)思想,為學(xué)生今后學(xué)習(xí)中學(xué)數(shù)學(xué)和物理、化學(xué)打下基礎(chǔ)。反比例的意義這部分內(nèi)容是在學(xué)生理解并掌握比和比例的意義、性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的,但概念比較抽象,學(xué)習(xí)難度比較大,是六年級(jí)教學(xué)內(nèi)容的一個(gè)教學(xué)重點(diǎn)也是一個(gè)教學(xué)難點(diǎn)。
在教學(xué)反比例的意義時(shí),我首先通過復(fù)習(xí),鞏固學(xué)生對(duì)正比例意義的理解。然后安排準(zhǔn)備題正比例的判斷,從中發(fā)現(xiàn)第3小題不成正比例,從而引入學(xué)習(xí)內(nèi)容和學(xué)習(xí)目標(biāo)。這通過復(fù)習(xí)、比較,不成正比例,那么它成不成比例呢?又會(huì)成什么比例?通過設(shè)疑不僅激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,還激起了學(xué)生自主參與的積極性和主動(dòng)性,為自主探究新知?jiǎng)?chuàng)造了條件并激發(fā)了積極的情感態(tài)度。因?yàn)榉幢壤囊饬x這一部分的內(nèi)容的編排跟正比例的意義比較相似,在教學(xué)反比例的意義時(shí),我以學(xué)生學(xué)習(xí)的正比例的意義為基礎(chǔ),在學(xué)生之間創(chuàng)設(shè)了一種自主探究、相互交流、相互合作的關(guān)系,讓學(xué)生主動(dòng)、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律,培養(yǎng)了學(xué)生的'自主探究的能力。在學(xué)完例3后,我并沒有急于讓學(xué)生概括出反比例的意義,而是讓學(xué)生按照學(xué)習(xí)例3的方法學(xué)習(xí)試一試,接著對(duì)例3和試一試進(jìn)行比較,得出它們的相同點(diǎn),在此基礎(chǔ)上來揭示反比例的意義,就顯得水道渠成了。然后,再通過“想一想”中兩種相關(guān)聯(lián)的量進(jìn)行判斷,以加深學(xué)生對(duì)反比例意義的理解。最后,通過學(xué)生對(duì)正反比例意義的對(duì)比,加強(qiáng)了知識(shí)的內(nèi)在聯(lián)系,通過區(qū)別不同的概念,鞏固了知識(shí)。并通過練習(xí),使學(xué)生加深對(duì)概念的理解。
通過這節(jié)課的教學(xué)我深深的體會(huì)到要上一堂數(shù)學(xué)課難,上好一堂數(shù)學(xué)課更難,課前雖做了充分的準(zhǔn)備,但還是存在不少問題。比如練習(xí)題安排難易不到位。由于學(xué)生剛接觸反比例的意義,應(yīng)多練習(xí)學(xué)生接觸較多的題目,使學(xué)生的基礎(chǔ)得到鞏固,不能讓難題把學(xué)生剛建立起的知識(shí)結(jié)構(gòu)沖跨。參與學(xué)生的探究不夠。親其師信其道,那么親其生知其道不為過,真正融入學(xué)生才能體會(huì)學(xué)生的思想才能真正落實(shí)教學(xué)新理念。
當(dāng)然,教學(xué)過程中還或多或少存在其它的問題,但有問題就有收獲,在以后的教學(xué)中,認(rèn)真反思,仔細(xì)分析,查找根源尋求對(duì)策,在教學(xué)的道路上不斷攀登。
----------------------
上完課后,雖然看了聽課老師給我的評(píng)價(jià),但我一直在思考,學(xué)生是怎么評(píng)價(jià)的呢?在學(xué)生眼里,到底哪個(gè)地方出問題了呢?突然,靈機(jī)一動(dòng),干脆和學(xué)生一起交流一下吧,也許效果還更好呢?通過與學(xué)生交談,讓大家一起再次回顧本節(jié)課,找一找優(yōu)點(diǎn)和不足,學(xué)生的回答很是讓我驚奇,現(xiàn)摘錄如下:
優(yōu)點(diǎn):
1、課堂導(dǎo)入新穎、有趣、有效,結(jié)尾有所創(chuàng)新,改變了以前“通過本節(jié)課的學(xué)習(xí),大家有什么收獲呢?”等傳統(tǒng)方式,從而使得大家大家想學(xué)、樂學(xué);
2、老師講的詳細(xì),特別是講授兩種相關(guān)聯(lián)的量,用通俗、簡(jiǎn)單的語言讓大家一聽就明白了,并且很快就可以判斷出是否是兩種相關(guān)聯(lián)的量;
3、題目與現(xiàn)實(shí)生活聯(lián)系緊密,讓大家感覺學(xué)習(xí)數(shù)學(xué)很有用;
4、課堂上學(xué)生討論的時(shí)間充足(數(shù)學(xué)網(wǎng)),參與度較高,且時(shí)效性較強(qiáng);
5、課堂調(diào)控能力較強(qiáng),有自己的教學(xué)風(fēng)格;
6、板書明確、清晰,一目了然;
7、設(shè)計(jì)合理,處理偶發(fā)事件的能力較強(qiáng)。
缺點(diǎn):
1、課堂氣氛沒有以前活躍;
2、知識(shí)量太大,難度較大,很少有不經(jīng)過思考或稍作思考就能回答出來的問題;
3、小組合作時(shí),沒有分好工,導(dǎo)致在計(jì)算相對(duì)應(yīng)的每組數(shù)的和、差、積、商時(shí),每個(gè)同學(xué)都在計(jì)算,因而用的時(shí)間較多,如果四人小組分好工,沒人計(jì)算一種運(yùn)算,時(shí)間就會(huì)節(jié)約一半。
4、對(duì)學(xué)生的鼓勵(lì)性語言欠缺;
5、板書中的字體不太規(guī)范,要加強(qiáng)基本功的訓(xùn)練;
針對(duì)聽課老師和學(xué)生的評(píng)價(jià),在以后的教學(xué)中,我會(huì)發(fā)揚(yáng)優(yōu)點(diǎn)、克服不足,不斷提高自己的教學(xué)水平。
六年級(jí)數(shù)學(xué)下冊(cè)《正比例和反比例的復(fù)習(xí)》教學(xué)反思
本節(jié)復(fù)習(xí)課,目的是通過整理復(fù)習(xí),使學(xué)生對(duì)正比例和反比例的知識(shí)有一個(gè)全面的認(rèn)識(shí),使所學(xué)知識(shí)結(jié)構(gòu)化,系統(tǒng)化。由于學(xué)生已是高年級(jí),應(yīng)該能夠自主對(duì)知識(shí)進(jìn)行整理,形成系統(tǒng),因此在整理與回顧時(shí)我盡量放手,給學(xué)生充足的時(shí)間,讓學(xué)生將本單元所學(xué)內(nèi)容進(jìn)行回顧整理,再深入各學(xué)習(xí)小組巡回指導(dǎo),適當(dāng)進(jìn)行點(diǎn)撥。在這個(gè)過程中,我為學(xué)生提供自主梳理知識(shí)的時(shí)間和空間,使學(xué)生體會(huì)數(shù)學(xué)知識(shí)、方法之間的密切聯(lián)系。并注重發(fā)展學(xué)生提出問題、解決問題的能力,在回顧、整理、鞏固、應(yīng)用的過程中幫助學(xué)生再次經(jīng)歷重要概念和方法的形成過程,使學(xué)生不斷積累活動(dòng)經(jīng)驗(yàn),體會(huì)一些重要的數(shù)學(xué)思想。
從前幾次學(xué)生的作業(yè)和考試情況來看,學(xué)生在用比例來解決問題的時(shí)候,有部分學(xué)生之所以沒有完全掌握還是沒有理解正、反比例的判斷,所以我在復(fù)習(xí)正、反比例的應(yīng)用的時(shí)候應(yīng)注重?cái)?shù)量關(guān)系的分析,并且在分析的過程中注重培養(yǎng)學(xué)生對(duì)生活經(jīng)驗(yàn)加以深化和理解。通過本節(jié)課的復(fù)習(xí),使學(xué)生再次掌握了正比例和反比例的概念,并使學(xué)生再一次的經(jīng)歷將一些實(shí)際問題抽象成代數(shù)問題的'過程,進(jìn)一步體會(huì)事物之間的聯(lián)系和區(qū)別。在練習(xí)題的設(shè)計(jì)中我注重聯(lián)系學(xué)生的生活實(shí)際,盡量選擇離學(xué)生的生活接近的例子,培養(yǎng)學(xué)生在實(shí)際中學(xué)數(shù)學(xué),用數(shù)學(xué)的興趣
關(guān)于《成正比例的量和成反比例的量》的教學(xué)反思范文
上周二開始上成正比例和反比例的量,有很多練習(xí)是判斷兩個(gè)量是否成比例,成什么比例。
例如:
(1)被除數(shù)一定,商和除數(shù)
(2)圓柱的體積一定,圓柱的底面積和高
(3)總價(jià)一定,單價(jià)和數(shù)量
(4)三角形面積一定,底邊和高
(5)小麥每公頃產(chǎn)量一定,種小麥的公頃數(shù)和總產(chǎn)量
(6)比的前項(xiàng)一定,后項(xiàng)和比值。
根據(jù)正、反比例關(guān)系的判定方法,我們首先判斷兩個(gè)量是不是相關(guān)聯(lián)的量。具體的說,就是兩個(gè)量是否具有相乘、相除的關(guān)系,它們的結(jié)果能否通過條件知道是定值,從而判斷它們成不成比例或成什么比例。
從學(xué)生的作業(yè)來看,(2)和(3)小題基本不會(huì)出錯(cuò),對(duì)于圓柱的體積剛剛講完,底面積*高=圓柱的體積(一定),可以很好的.判斷出來是成反比例的。
(1)和(6)很多孩子是寫的成正比例,其實(shí)也是成反比例,被除數(shù)/除數(shù)=商,比的前項(xiàng)/比的后項(xiàng)=比值,可能沒有注意這里誰是定值,或者說對(duì)于這三個(gè)量之間的變式掌握的不好。
(4)他們說不成比例,原因是多了個(gè)2,三角形的面積=底*高/2,這個(gè)的變式主要是學(xué)生沒有利用三角形的面積的推導(dǎo),底*高=2*三角形的面積(一定),所以成反比例。
判斷兩個(gè)量是否成比例,成什么比例。對(duì)學(xué)生說有點(diǎn)難,主要難在變形,代數(shù)式的變形在中學(xué)還要學(xué)習(xí),現(xiàn)在是個(gè)初步的接觸。
正比例、反比例的教學(xué)反思
成正比例、反比例的量是北師大版六年級(jí)下冊(cè)第二單元中的內(nèi)容。通過學(xué)習(xí),使學(xué)生理解正比例和反比例的意義,會(huì)正確判斷成正比例的量和反比例的量,并初步了解表示成正比例量的圖象特征和反比例量的圖像特征,并能根據(jù)圖像解決有關(guān)的簡(jiǎn)單問題。它是以后用比例解答應(yīng)用題的關(guān)鍵。學(xué)習(xí)對(duì)正反比例的判斷,才能夠準(zhǔn)確地對(duì)應(yīng)用題中所出現(xiàn)的量進(jìn)行判斷,才能準(zhǔn)確地列出比例或者方程解題。正反比例關(guān)系是比較重要的一種數(shù)量間的關(guān)系。如何準(zhǔn)確地把握這一關(guān)系的判斷方法那是非常重要的。
教學(xué)中我體會(huì)到:正比例、反比例知識(shí)是學(xué)生比較難學(xué)的內(nèi)容。在判斷兩種變量是成正比例、成反比例時(shí),學(xué)生總是遲疑不定、猶豫不決,常常出現(xiàn)判斷錯(cuò)誤。
在這部分內(nèi)容中教材淡化了學(xué)生對(duì)數(shù)量關(guān)系的理解,而是讓學(xué)生能夠在具體的情境的中慢慢體會(huì)。正反比例的教學(xué)并不僅僅停留在數(shù)量關(guān)系上,只是讓學(xué)生能夠根據(jù)數(shù)量關(guān)系作一些簡(jiǎn)單的判斷。這樣讓許多學(xué)生只是停留在機(jī)械的模仿和識(shí)記上。因此在復(fù)習(xí)題中我讓學(xué)生復(fù)習(xí)了常見的數(shù)量關(guān)系,并且聯(lián)系教材復(fù)習(xí)了教材及練習(xí)中涉及到的一些數(shù)量關(guān)系,滲透了難點(diǎn)。
教學(xué)過程中我又利用多媒體課件,出示表格讓學(xué)生弄清什么叫“兩種相關(guān)聯(lián)”的.量,引導(dǎo)學(xué)生從表格中去發(fā)現(xiàn)時(shí)間和路程兩種量的變化情況,在變化中發(fā)現(xiàn):路程隨著時(shí)間的增加而增加或減少而減少,引導(dǎo)學(xué)生初步感知成正比例的兩種量的變化方向性。
同時(shí)讓學(xué)生從生活中列舉了許多生活中正比例和反比例的實(shí)例。通過討論“每袋大米的質(zhì)量一定,大米的總質(zhì)量和代數(shù)成什么比例?一支圓珠筆的單價(jià)一定,買的支數(shù)和總價(jià)成什么比例?李叔叔要去游長(zhǎng)城。不同的交通工具所需時(shí)間如下:自行車每小時(shí)10千米,坐公交車每小時(shí)40千米,自己開小轎車去每小時(shí)80千米??偮烦桃欢?,速度和所需時(shí)間成什么比例?課堂上通過師生互動(dòng),生生互動(dòng),小組合作、生生合作、匯報(bào)學(xué)習(xí)成果或集中解決共性疑難問題,使學(xué)生在掌握課堂內(nèi)容的基礎(chǔ)上萌發(fā)出向更深層次思考的欲望。
在教學(xué)中同樣也感覺到,由于這兩個(gè)概念比較長(zhǎng),所以對(duì)于學(xué)生來說要真正完整的記憶下來是比較困難的,特別是對(duì)一些學(xué)習(xí)困難的學(xué)生。所以我也教給學(xué)生一定的方法,抓住句中的重點(diǎn),通過理解來記憶。讓學(xué)生通過相互之間說,前后同桌檢查,達(dá)到對(duì)該概念的熟練敘述。張小瓊
985大學(xué) 211大學(xué) 全國(guó)院校對(duì)比 專升本 美國(guó)留學(xué) 留求藝網(wǎng)